• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating performance and energy efficiency on a private cloud

Smith, James William January 2014 (has links)
Organizations are turning to private clouds due to concerns about security, privacy and administrative control. They are attracted by the flexibility and other advantages of cloud computing but are wary of breaking decades-old institutional practices and procedures. Private Clouds can help to alleviate these concerns by retaining security policies, in-organization ownership and providing increased accountability when compared with public services. This work investigates how it may be possible to develop an energy-aware private cloud system able to adapt workload allocation strategies so that overall energy consumption is reduced without loss of performance or dependability. Current literature focuses on consolidation as a method for improving the energy-efficiency of cloud systems, but if consolidation is undesirable due to the performance penalties, dependability or latency then another approach is required. Given a private cloud in which the machines are constant, with no machines being powered down in response to changing workloads, and a set of virtual machines to run, each with different characteristics and profiles, it is possible to mix the virtual machine placement to reduce energy consumption or improve performance of the VMs. Through a series of experiments this work demonstrates that workload mixes can have an effect on energy consumption and the performance of applications running inside virtual machines. These experiments took the form of measuring the performance and energy usage of applications running inside virtual machines. The arrangement of these virtual machines on their hosts was varied to determine the effect of different workload mixes. The insights from these experiments have been used to create a proof-of- concept custom VM Allocator system for the OpenStack private cloud computing platform. Using CloudMonitor, a lightweight monitoring application to gather data on system performance and energy consumption, the implementation uses a holistic view of the private cloud state to inform workload placement decisions.
2

FairCPU: Uma Arquitetura para Provisionamento de MÃquinas Virtuais Utilizando CaracterÃsticas de Processamento / FairCPU: An Architecture for Provisioning Virtual Machines Using Processing Features

Paulo Antonio Leal Rego 02 March 2012 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / O escalonamento de recursos à um processo chave para a plataforma de ComputaÃÃo em Nuvem, que geralmente utiliza mÃquinas virtuais (MVs) como unidades de escalonamento. O uso de tÃcnicas de virtualizaÃÃo fornece grande flexibilidade com a habilidade de instanciar vÃrias MVs em uma mesma mÃquina fÃsica (MF), modificar a capacidade das MVs e migrÃ-las entre as MFs. As tÃcnicas de consolidaÃÃo e alocaÃÃo dinÃmica de MVs tÃm tratado o impacto da sua utilizaÃÃo como uma medida independente de localizaÃÃo. à geralmente aceito que o desempenho de uma MV serà o mesmo, independentemente da MF em que ela à alocada. Esta à uma suposiÃÃo razoÃvel para um ambiente homogÃneo, onde as MFs sÃo idÃnticas e as MVs estÃo executando o mesmo sistema operacional e aplicativos. No entanto, em um ambiente de ComputaÃÃo em Nuvem, espera-se compartilhar um conjunto composto por recursos heterogÃneos, onde as MFs podem variar em termos de capacidades de seus recursos e afinidades de dados. O objetivo principal deste trabalho à apresentar uma arquitetura que possibilite a padronizaÃÃo da representaÃÃo do poder de processamento das MFs e MVs, em funÃÃo de Unidades de Processamento (UPs), apoiando-se na limitaÃÃo do uso da CPU para prover isolamento de desempenho e manter a capacidade de processamento das MVs independente da MF subjacente. Este trabalho busca suprir a necessidade de uma soluÃÃo que considere a heterogeneidade das MFs presentes na infraestrutura da Nuvem e apresenta polÃticas de escalonamento baseadas na utilizaÃÃo das UPs. A arquitetura proposta, chamada FairCPU, foi implementada para trabalhar com os hipervisores KVM e Xen, e foi incorporada a uma nuvem privada, construÃda com o middleware OpenNebula, onde diversos experimentos foram realizados para avaliar a soluÃÃo proposta. Os resultados comprovam a eficiÃncia da arquitetura FairCPU em utilizar as UPs para reduzir a variabilidade no desempenho das MVs, bem como para prover uma nova maneira de representar e gerenciar o poder de processamento das MVs e MFs da infraestrutura. / Resource scheduling is a key process for cloud computing platform, which generally uses virtual machines (VMs) as scheduling units. The use of virtualization techniques provides great flexibility with the ability to instantiate multiple VMs on one physical machine (PM), migrate them between the PMs and dynamically scale VMâs resources. The techniques of consolidation and dynamic allocation of VMs have addressed the impact of its use as an independent measure of location. It is generally accepted that the performance of a VM will be the same regardless of which PM it is allocated. This assumption is reasonable for a homogeneous environment where the PMs are identical and the VMs are running the same operating system and applications. Nevertheless, in a cloud computing environment, we expect that a set of heterogeneous resources will be shared, where PMs will face changes both in terms of their resource capacities and as also in data affinities. The main objective of this work is to propose an architecture to standardize the representation of the processing power by using processing units (PUs). Adding to that, the limitation of CPU usage is used to provide performance isolation and maintain the VMâs processing power at the same level regardless the underlying PM. The proposed solution considers the PMs heterogeneity present in the cloud infrastructure and provides scheduling policies based on PUs. The proposed architecture is called FairCPU and was implemented to work with KVM and Xen hypervisors. As study case, it was incorporated into a private cloud, built with the middleware OpenNebula, where several experiments were conducted. The results prove the efficiency of FairCPU architecture to use PUs to reduce VMsâ performance variability, as well as to provide a new way to represent and manage the processing power of the infrastructureâs physical and virtual machines.

Page generated in 0.0415 seconds