Spelling suggestions: "subject:"VisÃo sintética"" "subject:"VisÃo sintática""
1 |
Gradient-Based Steering for Vision-Based Crowd Simulation Algorithms / Gradient-Based Steering for Vision-Based Crowd Simulation AlgorithmsTeÃfilo Bezerra Dutra 16 June 2015 (has links)
nÃo hà / Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising perspectives by more realistically imitating the way humans navigate according to what they perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is introduced a cost function, based on perceptual variables, which estimates an agentâs situation considering both the risks of future collision and a desired destination. It is then computed the partial derivatives of that function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness of the current situation. Improvements are demonstrated in several cases. / Alguns dos algoritmos mais recentes para simulaÃÃo de multidÃo equipam agentes com um sistema visual sintÃtico para auxiliÃ-los em sua locomoÃÃo. Eles oferecem perspectivas promissoras ao imitarem de forma mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente. Nesta tese, à proposto um novo laÃo de percepÃÃo/aÃÃo para dirigir agentes ao longo de trajetÃrias livres de colisÃes que melhoram significativamente a qualidade dos simuladores de multidÃo baseados em visÃo. Em contraste com abordagens anteriores - que fazem agentes evitarem colisÃes de maneira puramente reativa - à sugerida a exploraÃÃo de toda gama de adaptaÃÃes possÃveis e a retenÃÃo da que for Ãtima localmente. Para isto, à introduzida uma funÃÃo de custo, baseada em variÃveis de percepÃÃo, que estima a situaÃÃo atual do agente considerando tanto os riscos de futuras colisÃes como o destino desejado. SÃo entÃo computadas as derivadas parciais dessa funÃÃo com respeito a todas adaptaÃÃes de movimento possÃveis. O agente adapta seu movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuiÃÃes: a definiÃÃo de um esquema de controle de propÃsito geral para a orientaÃÃo de agentes baseados em visÃo sintÃtica; e a proposiÃÃo de funÃÃes de custo para avaliar o perigo da situaÃÃo atual. As melhorias obtidas com o modelo sÃo demonstradas em diversos casos.
|
Page generated in 0.043 seconds