• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Investigation Of Near And Far Field Flow Characteristics Of Circular And Non-circular Turbulent Jets

Tasar, Gursu 01 December 2008 (has links) (PDF)
The atomization problem of high speed viscous jets has many applications in industrial processes and machines. In all these applications, it is required that the droplets have high surface area/volume ratio meaning that the droplets should be as small as possible. This can be achieved with high rates of turbulence and mixing of the flow. In order to constitute a foresight of geometry eects on droplet size, experimental investigation and the determination of flow characteristics in near and far fields of a low-speed air jet have been performed. In order to fulfill this task, three components of instantaneous velocity are measured, using a triple sensor Constant Temperature Anemometer (CTA) system. Through these measurements, mean velocity, Reynolds stress, velocity decay, spreading rate, turbulent kinetic energy, vorticity, and mass entrainment rate values are obtained. Stress-Strain relationship is also observed. Measurements are obtained for a baseline circular nozzle (round jet) as well as for an equilateral triangular and a square nozzle. On the basis of these measurements, the equilateral triangular jet is found to be the best option in order to get highest turbulence and mixing level with smallest core length.
2

Sample Injector Fabrication and Delivery Method Development for Serial Crystallography using Synchrotrons and X-ray Free Electron Lasers

January 2015 (has links)
abstract: Sample delivery is an essential component in biological imaging using serial diffraction from X-ray Free Electron Lasers (XFEL) and synchrotrons. Recent developments have made possible the near-atomic resolution structure determination of several important proteins, including one G protein-coupled receptor (GPCR) drug target, whose structure could not easily have been determined otherwise (Appendix A). In this thesis I describe new sample delivery developments that are paramount to advancing this field beyond what has been accomplished to date. Soft Lithography was used to implement sample conservation in the Gas Dynamic Virtual Nozzle (GDVN). A PDMS/glass composite microfluidic injector was created and given the capability of millisecond fluidic switching of a GDVN liquid jet within the divergent section of a 2D Laval-like GDVN nozzle, providing a means of collecting sample between the pulses of current XFELs. An oil/water droplet immersion jet was prototyped that suspends small sample droplets within an oil jet such that the sample droplet frequency may match the XFEL pulse repetition rate. A similar device was designed to use gas bubbles for synchronized “on/off” jet behavior and for active micromixing. 3D printing based on 2-Photon Polymerization (2PP) was used to directly fabricate reproducible GDVN injectors at high resolution, introducing the possibility of systematic nozzle research and highly complex GDVN injectors. Viscous sample delivery using the “LCP injector” was improved with a method for dealing with poorly extruding sample mediums when using full beam transmission from the Linac Coherent Light Source (LCLS), and a new viscous crystal-carrying medium was characterized for use in both vacuum and atmospheric environments: high molecular weight Polyethylene Glycol. / Dissertation/Thesis / Doctoral Dissertation Physics 2015

Page generated in 0.0391 seconds