• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Validation and application of advanced soil constitutive models in numerical modelling of soil and soil-structure interaction under seismic loading

Kowalczyk, Piotr Jozef 23 September 2020 (has links)
This thesis presents validation and application of advanced soil constitutive models in cases of seismic loading conditions. Firstly, results of three advanced soil constitutive models are compared with examples of shear stack experimental data for free field response in dry sand for shear and compression wave propagation. Higher harmonic generation in acceleration records, observed in experimental works, is shown to be possibly the result of soil nonlinearity and fast elastic unloading waves. This finding is shown to have high importance on structural response, real earthquake records and reliability of conventionally employed numerical tools. Finally, short study of free field response in saturated soil reveals similar findings on higher harmonic generation. Secondly, two advanced soil constitutive models are used, and their performance is assessed based on examples of experimental data on piles in dry sand in order to validate the ability of the constitutive models to simulate seismic soil-structure interaction. The validation includes various experimental configurations and input motions. The discussion on the results focuses on constitutive and numerical modelling aspects. Some improvements in the formulations of the models are suggested based on the detailed investigation. Finally, the application of one of the advanced soil constitutive models is shown in regard to temporary natural frequency wandering observed in structures subjected to earthquakes. Results show that pore pressure generated during seismic events causes changes in soil stiffness, thus affecting the natural frequency of the structure during and just after the seismic event. Parametric studies present how soil permeability, soil density, input motion or a type of structure may affect the structural natural frequency and time for its return to the initial value. In addition, a time history with an aftershock is analysed to investigate the difference in structural response during the earthquake and the aftershock.

Page generated in 0.1691 seconds