• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relaxace impaktních kráterů ve sluneční soustavě / Impact crater relaxation throughout the Solar System

Kihoulou, Martin January 2021 (has links)
Title: Impact crater relaxation throughout the Solar System Author: Martin Kihoulou Department: Department of Geophysics Supervisor: RNDr. Klára Kalousová, Ph.D., Department of Geophysics Abstract: In this thesis, we study the viscous relaxation of an impact-deformed icy shell of a dwarf planet Pluto. Motivation for this work is the position of Sputnik Planitia, a 1000 km wide, nitrogen-filled elliptic basin, which is located very close to Pluto-Charon tidal axis. Given this unlikely position on Pluto's sur- face, it was suggested that the basin was formed elsewhere and the whole body reoriented afterwards. For the reorientation to occur, the basin has to generate a positive gravity anomaly for which a combination of impact-related subsurface ocean uplift, ejecta blanket and accumulation of nitrogen ice was suggested. How- ever, to maintain the orientation towards the minimum principal axis of inertia until today, the ocean uplift must be present on timescales of billions of years, which may be achieved due to an insulating layer of high viscosity clathrates at the ice/ocean interface. We solve Pluto's ice shell evolution by the finite element method in 2D spherical axisymmetric geometry with an evolving free surface and assuming a viscous rheology. Our results show that the thermal effect of the im- pact...
2

Origin of surface undulations at the Kamb Ice Stream grounding line, West Antarctica

Seifert, Fiona Bronwyn 01 January 2012 (has links)
The West Antarctic Ice Sheet is drained primarily by five major ice streams, which together control the volume of ice discharged into the ocean across the grounding line. The grounding line of Kamb Ice Stream (KIS) is unusual because the ice stream upstream of it is stagnant. Here, a set of surface features--shore-parallel, long wavelength, low amplitude undulations--found only at that grounding line are examined and found to be "pinch and swell" features formed by an instability in the viscous deformation of the ice. When a relatively competent layer is surrounded by lower strength materials, particular wavelength features within the layer may be amplified under certain layer thickness and strain rate conditions. The undulations at KIS grounding line are possible due to the relatively large strain rates and particular ice thickness at that location. Several data sets are used to characterize the surface features. High resolution surface profiles are created using kinematic GPS carried on board a sled that was used to tow ice penetrating radar equipment. The radar data are used to examine the relationship between surface shape and basal crevasses. Additional surface profiles are created using ICESat laser altimeter observations. Repeat GPS surveys of a strain grid across the grounding line yields strain rate information. Analysis of repeat observations over tidal cycles and multi-day intervals shows that the features are not standing or traveling waves. Together, these observations are then used to evaluate the contributions of elastic and viscous deformation of the ice in creating the grounding line undulations.
3

Termomechanická interakce vnějších ledových slupek a podpovrchových oceánů na ledových měsících Jupiteru a Saturnu / Thermomechanical interaction between outer ice shells and deep oceans on icy moons of Jupiter and Saturn

Malík, Jiří January 2018 (has links)
The thesis contains a survey of numerical tools for studying thermomechanical interactions of a two-phase system contained in a domain with an upper bound- ary that forms a free surface. The enthalpy diffused-interface formulation is used for an approximation of the phase change interface and the computing algorithm is benchmarked against an analytical solution of the Stefan problem. Arbitrary Lagrangian-Eulerian kinematical description of the continuum is applied to over- come the difficulty in the form of the free surface. The validity of the approach is examined on a thermal convection benchmark problem. 1

Page generated in 0.1398 seconds