• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of the VHP-Female Full-Body Computational Model and Its Applications for Biomedical Electromagnetic Modeling

Yanamadala, Janakinadh 28 January 2015 (has links)
Computational modeling offers better insight into a wide range of bioelectrical and biomechanical problems with improved tools for the design of medical devices and the diagnosis of pathologies. Electromagnetic modeling at low and high frequencies is particularly necessary. Modeling electromagnetic, structural, thermal, and acoustic response of the human body to different internal and external stimuli is limited by the availability of numerically efficient computational human models. This study describes the development to date of a computational full-body human model - Visible Human Project (VHP) - Female Model. Its unique feature is full compatibility both with MATLAB and specialized FEM computational software packages such as ANSYS HFSS/Maxwell 3D. This study also describes progress made to date in using the newly developed tools for segmentation. A visualization tool is implemented within MATLAB and is based on customized version of the constrained 2D Delaunay triangulation method for intersecting objects. This thesis applies a VHP - Female Model to a specific application, transcranial Direct Current Stimulation (tDCS). Transcranial Direct Current Stimulation has been beneficial in the stimulation of cortical activity and treatment of neurological disorders in humans. The placement of electrodes, which is cephalic versus extracephalic montages, is studied for optimal targeting of currents for a given functional area. Given the difficulty of obtaining in vivo measurements of current density, modeling of conventional and alternative electrode montages via the FEM has been utilized to provide insight into the tDCS montage performance. An insight into future work and potential areas of research, such as study of bone quality have been presented too.

Page generated in 0.06 seconds