• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation and Optimization of Novel Visible-Light-Active Photocatalysts for Waste-Water Treatment

Ran, Rong January 2016 (has links)
Photocatalysis is a series of advanced light-induced redox reaction processes resulting in the degradation and mineralization of organic pollutants in the presence of oxygen and water. Due to their capability to destroy contaminants under mild conditions, photocatalytic processes have attracted considerable attention in the field of waste-water treatment. However, photocatalytic reactions using the traditional TiO2 photocatalyst suffer from low energy efficiencies under solar irradiation. This low efficiency in the utilization of solar energy lies in its incapability in absorbing visible lights and also the high recombination rate of photo-excited species in photocatalysts. In addition, difficulties in the separation of fluids from micro- or nano-scale catalysts in large scale systems substantially impact cost efficiency in practice. In this thesis, strategies are explored which address these issues in order to improve the feasibility of solar photocatalysis. Two branches of photocatalytic transition metal-oxide semiconductor materials are investigated, namely bismuth-based and silver-based multi-phase heterogeneous photocatalysts. This research is focused on the design of visible-light-active metal-oxide photocatalysts to increase the absorption of visible light and to decrease the rates of electron-hole recombination, resulting in a high photocatalytic efficiency in regards to the degradation of organic pollutants. BiVO4 powder, synthesized from freshly made potassium metavanadate was prepared via hydrothermal treatment, characterized and experimentally investigated for the degradation of rhodamine B under visible light irradiation. The crystal structures and the specific surface areas of the composites, based on BiVO4 single phase crystal structures, are discussed. A multi-phase silver species (Ag2O/Ag3VO4/Ag4V2O7) photocatalyst was synthesized by adjusting the molar ratio of silver to vanadium (Ag to V) via hydrothermal method. The stabilities of as-prepared silver species composites regarding crystal structural changes due to photocatalytic reactions are investigated. Multi-phase silver species composites assisted with graphene oxide (GO-Ag2O/Ag3VO4/AgVO3) were synthesized at room temperature, and exhibited high visible-light photocatalytic activities regarding the degradation of model organic pollutants. The effect of graphene oxide addition on the photoactivity and on the photocorrosion of silver species composites under VLI is explored. The synergistic roles of each individual phase incorporated into the multi-phase composites are discussed regarding the photocatalytic performance.
2

Tailoring Biomass for Light Active Compounds and Materials

Singathi, Ravichandranath 06 August 2020 (has links)
No description available.
3

Design and development of a new generation of UV-visible-light-driven nanosized codoped titanium dioxide photocatalysts and biocides/sporocides, and environmental applications

Hamal, Dambar B. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Kenneth J. Klabunde / For solar environmental remediation, a new generation of nanosized (< 10 nm) titanium dioxide photocatalysts codoped with metals and nonmetals, or metals only were prepared by the xero-gel and aero-gel methods. For silver or cobalt-based xero-gel titanium dioxide photocatalysts, photoactivities tests revealed that codoping of titanium dioxide with a metal (1% Ag or 2% Co) and nonmetals (carbon and sulfur) is necessary to achieve high-activities for acetaldehyde degradation under visible light (wavelength > 420 nm). It was concluded that high visible-light-activities for acetaldehyde degradation over codoped titanium dioxide were attributed to an interplay of anatase crystallinity, high-surface area, reduced band-gap (< 3.0 eV), uniform dispersion of doped metal ions, and suppressed recombination rate of photogenerated electron-hole pairs. Moreover, the nature and amount of codoped metals play a significant role in visible-light-induced photocatalysis. Metals (Al, Ga, and In) doped/codoped titanium dioxide photocatalysts were prepared by the aero-gel method. The photocatalytic studies showed that activities of metal doped/codoped photocatalysts under UV light (wavelength < 400 nm) were found to be dependent on pollutants. Indium demonstrated beneficial effects in both textural and photocatalytic properties. Gallium and indium codoped titanium dioxide photocatalysts displayed even better performance in the CO oxidation reaction under UV light. Notably, titanium dioxide codoped with Ga, In, and Pt, exhibited unique photoactivities for the CO oxidation under both UV and visible light irradiation, indicating that this system could have promise for the water-gas shift reaction for hydrogen production. Silver-based nanostructured titanium dioxide samples were developed for killing human pathogens (Escherichia coli cells and Bacillus subtilis spores). Biocidal tests revealed that silver, carbon, and sulfur codoped titanium dioxide nanoparticles (< 10 nm) possess very strong antimicrobial actions on both E. coli (logarithmic kill > 8) and B. subtilis spores (logarithmic kill > 5) for 30 minute exposures in dark conditions compared with Degussa P25. It was believed that the carbon and sulfur codoped titanium dioxide support and Ag species acted synergistically during deactivation of both E. coli and B. subtilis spores. Thus, titanium dioxide codoped with silver, carbon, sulfur can serve as a multifunctional generic biocide and a visible- light-active photocatalyst.
4

Photocatalytic oxidation of volatile organic compounds for indoor air applications

Bayless, Lynette Vera January 1900 (has links)
Master of Science / Department of Chemical Engineering / Larry E. Erickson / Photocatalytic oxidation (PCO) is a promising and emerging technique in controlling indoor air contaminants, including volatile organic compounds (VOCs). It has broad air cleaning and deodorization applications in indoor environments ranging from residential and office buildings to healthcare and nursing facilities as well as spacecrafts, aircraft cabins and clean rooms in the agricultural and food industry. Numerous studies have been conducted to improve the effectiveness and performance of this technology. These include development of new configurations, energy-efficient catalysts and other parameters to control the process. However, only limited research has been conducted under realistic indoor environmental conditions. One of the most recent developments in photocatalysis is the synthesis of 2% C- and V-doped TiO[subscript]2, which is active under both dark and visible light conditions. However, like most research conducted in photocatalysis, the study on the reactivity of this catalyst has been performed only under laboratory conditions. This study investigated the possible application of the novel C and V co-doped TiO[subscript]2 in cleaning indoor air. Mathematical modeling and simulation techniques were employed to assess the potential use of some of the promising systems that utilize the catalyst (i.e., packed bed and thin films) as well as the effect of mass transfer limitations in the degradation of acetaldehyde, one of the VOCs that can be found in offices, residential buildings and other facilities.

Page generated in 0.0628 seconds