• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayesian 3D multiple people tracking using multiple indoor cameras and microphones

Lee, Yeongseon 13 May 2009 (has links)
This thesis represents Bayesian joint audio-visual tracking for the 3D locations of multiple people and a current speaker in a real conference environment. To achieve this objective, it focuses on several different research interests, such as acoustic-feature detection, visual-feature detection, a non-linear Bayesian framework, data association, and sensor fusion. As acoustic-feature detection, time-delay-of-arrival~(TDOA) estimation is used for multiple source detection. Localization performance using TDOAs is also analyzed according to different configurations of microphones. As a visual-feature detection, Viola-Jones face detection is used to initialize the locations of unknown multiple objects. Then, a corner feature, based on the results from the Viola-Jones face detection, is used for motion detection for robust objects. Simple point-to-line correspondences between multiple cameras using fundamental matrices are used to determine which features are more robust. As a method for data association and sensor fusion, Monte-Carlo JPDAF and a data association with IPPF~(DA-IPPF) are implemented in the framework of particle filtering. Three different tracking scenarios of acoustic source tracking, visual source tracking, and joint acoustic-visual source tracking are represented using the proposed algorithms. Finally the real-time implementation of this joint acoustic-visual tracking system using a PC, four cameras, and six microphones is addressed with two parts of system implementation and real-time processing.

Page generated in 0.071 seconds