Spelling suggestions: "subject:"viterbidecoding algorithm"" "subject:"turbodecoding algorithm""
1 |
Driving Behavior Prediction by Training a Hidden Markov ModelWilhelmsson, Anna, Bedoire, Sofia January 2020 (has links)
Introducing automated vehicles in to traffic withhuman drivers, human behavior prediction is essential to obtainoperation safety. In this study, a human behavior estimationmodel has been developed. The estimations are based on aHidden Markov Model (HMM) using observations to determinethe driving style of surrounding vehicles. The model is trainedusing two different methods: Baum Welch training and Viterbitraining to improve the performance. Both training methods areevaluated by looking at time complexity and convergence. Themodel is implemented with and without training and tested fordifferent driving styles. Results show that training is essentialfor accurate human behavior prediction. Viterbi training is fasterbut more noise sensitive compared to Baum Welch training. Also,Viterbi training produces good results if training data reflects oncurrently observed driver, which is not always the case. BaumWelch training is more robust in such situations. Lastly, BaumWelch training is recommended to obtain operation safety whenintroducing automated vehicles into traffic. / N ̈ar automatiserade fordon introduceras itrafiken och beh ̈over interagera med m ̈anskliga f ̈orare ̈ar det vik-tigt att kunna f ̈orutsp ̊a m ̈anskligt beteende. Detta f ̈or att kunnaerh ̊alla en s ̈akrare trafiksituation. I denna studie har en modellsom estimerar m ̈anskligt beteende utvecklats. Estimeringarna ̈ar baserade p ̊a en Hidden Markov Model d ̈ar observationeranv ̈ands f ̈or att best ̈amma k ̈orstil hos omgivande fordon itrafiken. Modellen tr ̈anas med tv ̊a olika metoder: Baum Welchtr ̈aning och Viterbi tr ̈aning f ̈or att f ̈orb ̈attra modellens prestanda.Tr ̈aningsmetoderna utv ̈arderas sedan genom att analysera derastidskomplexitet och konvergens. Modellen ̈ar implementerad medoch utan tr ̈aning och testad f ̈or olika k ̈orstilar. Erh ̊allna resultatvisar att tr ̈aning ̈ar viktigt f ̈or att kunna f ̈orutsp ̊a m ̈anskligtbeteende korrekt. Viterbi tr ̈aning ̈ar snabbare men mer k ̈ansligf ̈or brus i j ̈amf ̈orelse med Baum Welch tr ̈aning. Viterbi tr ̈aningger ̈aven en bra estimering i de fall d ̊a observerad tr ̈aningsdataavspeglar f ̈orarens k ̈orstil, vilket inte alltid ̈ar fallet. BaumWelch tr ̈aning ̈ar mer robust i s ̊adana situationer. Slutligenrekommenderas en estimeringsmodell implementerad med BaumWelch tr ̈aning f ̈or att erh ̊alla en s ̈aker k ̈orning d ̊a automatiseradefordon introduceras i trafiken / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
|
Page generated in 0.0706 seconds