• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Investigation of Vitiated-Air Heater for Oblique Detonation-Wave Engine

Hoban, Matthew M 01 January 2016 (has links)
A facility was designed to provide high-enthalpy, hypersonic flow to a detonation chamber. Preliminary investigation identified 1300 K and Mach 5 as the total temperature and Mach number require to stabilize an oblique detonation wave inside the detonation chamber. Vitiated-air heating was the preheating method chosen to meet these capabilities. The vitiator facility heats compressed air while still retaining about 50% of the original oxygen content. Schlieren flow visualization and conventional photography was performed at the exit plane of a choke plate, which simulated the throat of a converging-diverging nozzle. A shock diamond formation was observed within the jet exhausting out of the choke hole. This is a clear indication that the facility is capable of producing hypersonic flow. A stoichiometric propane-air mixture was burned inside the combustion chamber. A thermocouple survey measured an average temperature of 1099 K at the exit plane of the mixing chamber; however, the actual temperature is likely higher than this, because cool, ambient air could be seen mixing with the hot, vitiated air near the exit plane. Because the adiabatic flame temperature of propane-air is lower than that of hydrogen-air, if hydrogen is used to vitiate the air, the facility is capable of meeting the 1300-K objective.
2

Design Of A Connected Pipe Test Facility For Ramjet Applications

Sarisin, Mustafa Nevzat 01 May 2005 (has links) (PDF)
ABSTRACT DESIGN OF A CONNECTED PIPE TEST FACILITY FOR RAMJET APPLICATIONS SARISIN, Mustafa Nevzat M.S., Department of Mechanical Engineering Supervisor: Asst. Prof. Dr. Abdullah ULAS Co-Supervisor: Prof. Dr. Kahraman ALBAYRAK April 2005, 164 pages Development of the combustor of a ramjet can be achieved by connected pipe testing. Connected pipe testing is selected for combustor testing because pressure, temperature, Mach number, air mass flow rate can be simulated by this type of testing. Real time trajectory conditions and transition from rocket motor (booster) to ramjet operation can also be tested. The biggest advantage of connected pipe testing is the low operation cost and simplicity. Air mass flow rate requirement is less than the others which requires less air storage space and some components like supersonic nozzle and ejector system is not necessary. In this thesis, design of a connected pipe test facility is implemented. Three main systems are analyzed / air storage system, air heater system and test stand. Design of air storage system includes the design of pressure vessel and pressure &amp / flow regulation system. Pressure and flow regulation system is needed to obtain the actual flow properties that the combustor is exposed to during missile flight. Alternatives for pressure and air mass flow rate regulation are considered in this study. Air storage system designed in this thesis is 27.8 m3 at 50 bar which allows a test duration of 200 seconds at an average mass flow rate of 3 kg/s. Air heater system is utilized to heat the air to simulate the aerodynamic heating of the inlet. Several different combustion chamber configurations with different flame holding mechanisms are studied. The most efficient configuration is selected for this study. Combustion analysis of the air heater is performed by FLUENT CFD Code. Combustion process and air heater designs are validated using experimental data. Designed air heater system is capable of supplying air at a temperature range of 400-1000 K and mass flow rate range of 1.5-8 kg/s at Mach numbers between 0.1-0.5 and pressure between 2-8 bar. Finally the design of the test stand and ramjet combustor analysis are completed. 3D CAD models of the test stand are generated. Ramjet combustor that will be tested in the test setup is modeled and combustion analysis is performed by FLUENT CFD Code. The ramjet engine cruise altitude is 16 km and cruise Mach number is 3.5. Key-words: Air Breathing Engines, Ramjet, Connected Pipe, Direct Connect, Vitiator.

Page generated in 0.0471 seconds