• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysing transient effects in the ionosphere using narrowband VLF data.

Bremner, Sherry. January 2009 (has links)
Very Low Frequency (VLF) radio waves propagate within the Earth-ionosphere waveguide with very little attenuation. Modifications of the waveguide geometry affect the propagation conditions, and hence, the amplitude and phase of VLF signals. Changes in the ionosphere, such as the presence of the D-region during the day, or the precipitation of energetic particles, are the main causes of this modification. Using narrowband receivers monitoring remote VLF transmitters, the amplitude and phase of these signals are recorded. A multivariate data analysis technique, Principal Component Analysis (PCA), is applied to the data in order to determine parameters such as seasonal and diurnal changes which affect the variation of these signals. Data was then analysed for effects from extragalactic gamma ray bursts, terrestrial gamma ray flashes and solar flares. Only X-rays from solar flares were shown to have an appreciable affect on ionospheric propagation. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2009.
2

Title: Study of anomalous VLF perturbations in possible relation to seismic activity.

Brijraj, Sahil. January 2011 (has links)
Anomalous perturbations of the ionosphere have been observed either as uctuations in the critical frequency of the F-region ionosphere, foF2, or as uctuations in the nighttime VLF signals that propagate through the Earth Ionosphere Waveguide. All anomalies appear from an earliest of three weeks to one day prior to an earthquake occurrence, hence leading to be used as possible presursors and aid in short term earthquake prediction. Earthquakes of magnitude 5.5 and greater have a signi cant chance of having associated ionospheric anomalies, and anomalies are only detected within a radius of 500km from the epicentre. Solar events, however, greatly a ect the ionosphere and make seismogenic ionospheric signals di cult to isolate. This study concentrates on anomalous VLF signal perturbations observed along the propagation path between the NWC transmitter in Australia and narrowband receivers in Budapest and Tihany, Hungary for July 2007 to February 2008. Comparisons of anomaly appearances and seismic activity occurring within the Dobrovolsky area to the propagation path were carried out, with anomalies being observed predominantly prior to major seismic events. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
3

A study of wave induced electron precipitation at low and middle latitudes.

Friedel, Reiner Hans-Walter. January 1991 (has links)
Wave induced electron precipitation (WIEP) can modify the ionosphere above a sub-ionospherically propagating VLF signal in such a way as to perturb the amplitude and phase of the signal: The "Trimpi Event". In this thesis trimpi events are used in a study of WIEP events and in the responsible mechanism: The gyroresonant interaction. Trimpi activity at middle latitudes (SANAE, Antarctica, L = 4.02) and low latitudes (Durban, RSA , L = 1.69) together with the corresponding theory for the gyroresonant interaction is examined and compared. A newly developed computerised system for the detection and analysis of trimpi events has been developed in Durban. This system has been used to analyse tape data recorded at SANAE. Trimpi events were found on various transmitter paths to SANAE and a complete study of 1982 data has led to the establishment of trimpi characteristics as seen at SANAE: an absence of positive events and causative whistlers, a preference for short duration events (t < 25s), the occurrence of some very large events (up to 90% signal attenuation) , two minima in occurrence near 0015 and 0400 h Local Time, low occurrence and occurrence rate of events and evidence that interactions with non-ducted whistlers are of importance. The computerised sytem was then extended to collect data at Durban simultaneously from up to 20 transmitters worldwide. Examination of data from this survey showed very low occurrence rates of trimpis but yielded some daytime events for which the effectiveness of the gyroresonance interaction, which successfully explains the trimpi event at middle and low latitudes, had to be questioned. Thus a fully relativisic test particle simulation of the gyroresonant interaction was used to examine the effectiveness of gyroresonance at low L for producing trimpi events. This simulation was run for a wide range of interaction parameters and yielded the following constraints for effective pitch angle scattering (and hence precipitation) of electrons at low L: wave intensities in excess of 150 nT, wave frequencies in excess of 10 kHz and background electron densities at least one order of magnitude higher than normal. First data from the OMSKI project, a sophisticated VLF receiver operated at Durban as part of an international project, shows further evidence of low-latitude trirmpi activity. A survey of one month's continuous data is presented. In face of the evidence that trimpi events that occur at low L have the same signature as those at middle L but that the standard gyroresonance interaction is insufficient to cause them, alternate scenarios that could enhance the interaction were sought. In particular distortions in the ambient magnetic field (eg. PC-5 pulsations) were modelled using a new dipole-like background field model. This simulation showed that distortions which tend to reduce magnetic field curvature along field lines can significantly enhance the gyroresonant conditions and hence the interaction. A new set of conditions for effective gyroresonance at low L is thus established and contrasted with the more lenient conditions at middle L. A study of "frequency tracking" as a means to prolong resonance showed that natural whistlers do not posess the required frequency /time characteristics for this mechanism, and that artificial waves in a narrow range around the equatorial resonance frequency would ~ well suited for this purpose. An overview of the status of worldwide Trimpi detection networks together with the S.P.R.I. 's role in this regard is presented. / Thesis (Ph.D.)-University of Natal, Durban, 1991.

Page generated in 0.1608 seconds