• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Reactive Power Control of Isolated Power Systems

Falahi, Milad 14 March 2013 (has links)
This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally or due to a fault. Isolated power systems experience fast transients due to lack of an infinite bus capable of dictating the voltage and frequency reference. This dissertation only focuses on reactive control of islanded MicroGrids and AC/DC shipboard power systems. The problem is tackled using a Model Predictive Control (MPC) method, which uses a simplified model of the system to predict the voltage behavior of the system in future. The MPC method minimizes the voltage deviation of the predicted bus voltage; therefore, it is inherently robust and stable. In other words, this method can easily predict the behavior of the system and take necessary control actions to avoid instability. Further, this method is capable of reaching a smooth voltage profile and rejecting possible disturbances in the system. The studied MicroGrids in this dissertation integrate intermittent distributed energy resources such as wind and solar generators. These non-dispatchable sources add to the uncertainty of the system and make voltage and reactive control more challenging. The model predictive controller uses the capability of these sources and coordinates them dynamically to achieve the voltage goals of the controller. The MPC controller is implemented online in a closed control loop, which means it is self-correcting with the feedback it receives from the system.
2

Coordinated Voltage and Reactive Power Control of Power Distribution Systems with Distributed Generation

Paaso, Esa A 01 January 2014 (has links)
Distribution system voltage and VAR control (VVC) is a technique that combines conservation voltage reduction and reactive power compensation to operate a distribution system at its optimal conditions. Coordinated VVC can provide major economic benefits for distribution utilities. Incorporating distributed generation (DG) to VVC can improve the system efficiency and reliability. The first part of this dissertation introduces a direct optimization formulation for VVC with DG. The control is formulated as a mixed integer non-linear programming (MINLP) problem. The formulation is based on a three-phase power flow with accurate component models. The VVC problem is solved with a state of the art open-source academic solver utilizing an outer approximation algorithm. Applying the approach to several test feeders, including IEEE 13-node and 37-node radial test feeders, with variable load demand and DG generation, validates the proposed control. Incorporating renewable energy can provide major benefits for efficient operation of the distribution systems. However, when the number of renewables increases the system control becomes more complex. Renewable resources, particularly wind and solar, are often highly intermittent. The varying power output can cause significant fluctuations in feeder voltages. Traditional feeder controls are often too slow to react to these fast fluctuations. DG units providing reactive power compensation they can be utilized in supplying voltage support when fluctuations in generation occur. The second part of this dissertation focuses on two new approaches for dual-layer VVC. In these approaches the VVC is divided into two control layers, slow and fast. The slow control obtains optimal voltage profile and set points for the distribution control. The fast control layer is utilized to maintain the optimal voltage profile when the generation or loading suddenly changes. The MINLP based VVC formulation is utilized as the slow control. Both local reactive power control of DG and coordinated quadratic programming (QP) based reactive power control is considered as the fast control approaches. The effectiveness of these approaches is studied with test feeders, utility load data, and fast-varying solar irradiance data. The simulation results indicate that both methods achieve good results for VVC with DG.

Page generated in 0.0873 seconds