Spelling suggestions: "subject:"volterra integral equation"" "subject:"yolterra integral equation""
1 |
Extended backward stochastic Volterra integral equations and their applications to time-inconsistent stochastic recursive control problems / 拡張型後退確率ヴォルテラ積分方程式と時間非整合な再帰的確率制御問題への応用Hamaguchi, Yushi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第22973号 / 理博第4650号 / 新制||理||1668(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 日野 正訓, 教授 泉 正己, 准教授 矢野 孝次 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
Time periodic problems for Navier-Stokes equations in domains with cylindrical outlets to infinity / Navjė-Stokso lygčių periodiniai laiko atžvilgiu uždaviniai srityse su cilindriniais išėjimais į begalybęKeblikas, Vaidas 19 November 2008 (has links)
The research area of current PhD thesis is the analysis of time periodic Navier-Stokes equations in domains with cylindrical outlets to infinity. The objects of investigation is so called non-statonary Poiseuille solution in the straight cylinder and Navier-Stokes equations in system of cylinders. / Disertacijoje nagrinėjami Navjė-Stokso lygčių periodiniai laiko atžvilgiu uždaviniai srityse su cilindriniais išėjimais į begalybę. Pagrindiniai tyrimo objektai yra taip vadinami Puazelio sprendiniai tiesiame cilindre ir Stokso, bei Navjė-Stokso lygčių sistemos cilindrų sistemoje.
|
3 |
Propagation Prediction Over Random Rough Surface By Zeroth Order Induced Current DensityBalu, Narayana Srinivasan 07 November 2014 (has links) (PDF)
Electromagnetic wave propagation over random sea surfaces is a classical problem of interest for the Navy, and significant research has been done over the years. Here we make use of numerical and analytical methods to predict the propagation of microwaves over random rough surface. The numerical approach involves utilization of the direct solution (using Volterra integral equation of the second kind) to currents induced on a rough surface due to forward propagating waves to compute the scattered field. The mean scattered field is computed using the Monte-Carlo method. Since the exact solution (consisting of an infinite series) to induced current density is computationally intensive, there exists a need to predict the propagation using the closely accurate zeroth order induced current (first term of the series) for time-varying multiple realizations of a random rough surface in a computationally efficient manner. The wind-speed dependent, fully-developed, Piersen-Moskowitz sea spectrum has been considered in order to model a rough sea surface, although other partially-developed roughness spectra may also be utilized. An analytical solution based on the zeroth order current density obtained by deriving the mean scattered field as a function of the range and vertical height by directly using the Parabolic Equation (PE) approximation method and the resulting Green's function has been utilized for a comparative study. The analytical solution takes into account the diffused component of the scattered field.
|
Page generated in 0.0976 seconds