Spelling suggestions: "subject:"colume conduction"" "subject:"1volume conduction""
1 |
Performane of partial directed coherence subject to volume consuction effects. / Desempenho da coerência parcial direcionada sujeita aos efeitos de condução de volume.García Rincón, Diana Constanza 28 April 2017 (has links)
The strong relationship between cognitive processing and coherent behaviour and neurocognitive networks justifies the current huge interest in cortical functional connectivity modeling. This has fostered the development of connectivity estimators from the classical bivariate coherence concept to the notion of multivariate partial directed coherence (PDC) which provides information about temporal dependencies exposing cause and effect relationships. This work examines PDC performance for scalp EEG data whose research value has been subject to much debate in the light of the presence of volume conduction (VC) effects that often obscure the actual nature of cortical source dynamics. Through analytical considerations and simulations we show that even though (VC) can hinder accurate connectivity estimation, one can mitigate its effects by a judicious choice of scalp electrode configuration/ground reference. This observation allows settling the connectivity estimation adequacy debate in the presence of PDC. / A forte relação que processamento cognitivo e comportamento coerente tem com redes neurocognitivas justifica o enorme interesse atual em modelamento de conectividade cortical. Este fato tem justificado o desenvolvimento de estimadores de conectividade desde a clássica coerência bivariada até a noção multivariada de coerência parcial direcionada (PDC) que exibe informação a cerca de dependências temporais que permitem expor relações de causa e efeito. O presente trabalho examina o desempenho da PDC no contexto de EEG de escalpo cujo valor em pesquisa sob os efeitos de condução de volume (VC) tem sido objeto de uma quantidade substancial de questionamentos na medida em esta obscurece a observação da dinâmica das fontes corticais. Por meio de considerações analíticas e simulações, mostramos que é possível mitigar os erros de estimação devidos à VC através da escolha judiciosa da configuração de eletrodos e da referência de terra. Esta observação permite resolver o conflito acerca da adequabilidade da inferência cortical baseada em EEG de escalpo.
|
2 |
Performane of partial directed coherence subject to volume consuction effects. / Desempenho da coerência parcial direcionada sujeita aos efeitos de condução de volume.Diana Constanza García Rincón 28 April 2017 (has links)
The strong relationship between cognitive processing and coherent behaviour and neurocognitive networks justifies the current huge interest in cortical functional connectivity modeling. This has fostered the development of connectivity estimators from the classical bivariate coherence concept to the notion of multivariate partial directed coherence (PDC) which provides information about temporal dependencies exposing cause and effect relationships. This work examines PDC performance for scalp EEG data whose research value has been subject to much debate in the light of the presence of volume conduction (VC) effects that often obscure the actual nature of cortical source dynamics. Through analytical considerations and simulations we show that even though (VC) can hinder accurate connectivity estimation, one can mitigate its effects by a judicious choice of scalp electrode configuration/ground reference. This observation allows settling the connectivity estimation adequacy debate in the presence of PDC. / A forte relação que processamento cognitivo e comportamento coerente tem com redes neurocognitivas justifica o enorme interesse atual em modelamento de conectividade cortical. Este fato tem justificado o desenvolvimento de estimadores de conectividade desde a clássica coerência bivariada até a noção multivariada de coerência parcial direcionada (PDC) que exibe informação a cerca de dependências temporais que permitem expor relações de causa e efeito. O presente trabalho examina o desempenho da PDC no contexto de EEG de escalpo cujo valor em pesquisa sob os efeitos de condução de volume (VC) tem sido objeto de uma quantidade substancial de questionamentos na medida em esta obscurece a observação da dinâmica das fontes corticais. Por meio de considerações analíticas e simulações, mostramos que é possível mitigar os erros de estimação devidos à VC através da escolha judiciosa da configuração de eletrodos e da referência de terra. Esta observação permite resolver o conflito acerca da adequabilidade da inferência cortical baseada em EEG de escalpo.
|
3 |
Methods for modelling human functional brain networks with MEG and fMRIColclough, Giles January 2016 (has links)
MEG and fMRI offer complementary insights into connected human brain function. Evidence from the use of both techniques in the study of networked activity indicates that functional connectivity reflects almost every measurable aspect of human reality, being indicative of ability and deteriorating with disease. Functional network analyses may offer improved prediction of dysfunction and characterisation of cognition. Three factors holding back progress are the difficulty in synthesising information from multiple imaging modalities; a need for accurate modelling of connectivity in individual subjects, not just average effects; and a lack of scalable solutions to these problems that are applicable in a big-data setting. I propose two methodological advances that tackle these issues. A confound to network analysis in MEG, the artificial correlations induced across the brain by the process of source reconstruction, prevents the transfer of connectivity models from fMRI to MEG. The first advance is a fast correction for this confound, allowing comparable analyses to be performed in both modalities. A comparative study demonstrates that this new approach for MEG shows better repeatability for connectivity estimation, both within and between subjects, than a wide range of alternative models in popular use. A case-study analysis uses both fMRI and MEG recordings from a large dataset to determine the genetic basis for functional connectivity in the human brain. Genes account for 20% - 65% of the variation in connectivity, and outweigh the influence of the developmental environment. The second advance is a Bayesian hierarchical model for sparse functional networks that is applicable to both modalities. By sharing information over a group of subjects, more accurate estimates can be constructed for individuals' connectivity patterns. The approach scales to large datasets, outperforms state-of-the-art methods, and can provide a 50% noise reduction in MEG resting-state networks.
|
Page generated in 0.1054 seconds