Spelling suggestions: "subject:"cortex enerator tet"" "subject:"cortex enerator beet""
1 |
EXPERIMENTAL STUDY OF ACTIVE SEPARATION FLOW CONTROL IN A LOW PRESSURE TURBINE BLADE CASCADE MODELMcQuilling, Mark 01 January 2004 (has links)
The flow field around a low pressure turbine (LPT) blade cascade model with and without flow control is examined using ejector nozzle (EN) and vortex generator jet (VGJ) geometries for separation control. The cascade model consists of 6 Pak-B Pratt andamp; Whitney low pressure turbine blades with Re = 30,000-50,000 at a free-stream turbulence intensity of 0.6%. The EN geometry consists of combined suction and blowing slots near the point of separation. The VGJs consist of a row of holes placed at an angle to the free-stream, and are tested at two locations of 69% and 10.5% of the suction surface length (SSL). Results are compared between flow control on and flow control off states, as well as between the EN, VGJs, and a baseline cascade with no flow control geometry for steady and pulsatile blowing. The EN geometry is shown to control separation with both steady and pulsatile blowing. The VGJs at 69% SSL are shown to be much more aggressive than the EN geometry, achieving the same level of separation control with lower energy input. Pulsed VGJs (PVGJ) have been shown to be just as effective as steady VGJs, and results show that a 10% duty cycle is almost as effective as a 50% duty cycle. The VGJs at 10.5% SSL are shown to be inefficient at controlling separation. No combination of duty cycle and pulsing frequency tested can eliminate the separation region, with only higher steady blowing rates achieving separation control. Thus, the VGJs at 69% SSL are shown to be the most effective in controlling separation.
|
2 |
Vortex Generator Jet Flow Control in Highly Loaded CompressorsBaiense, Jr., Joao C 28 July 2014 (has links)
"A flow control method for minimizing losses in a highly loaded compressor blade was analyzed. Passive and active flow control experiments with vortex generator jets were conducted on a seven blade linear compressor cascade to demonstrate the potential application of passive flow control on a highly loaded blade. Passive flow control vortex generator jets use the pressure distribution generated by air flow over the blade profile to drive jets from the pressure side to the suction side. Active flow control was analyzed by pressuring the blade plenum with an auxiliary compressor unit. Active flow control decreased profile losses by approximately 37 % while passive flow control had negligible impact on the profile loss of a highly loaded blade. Passive flow control was able to achieve a jet velocity ratio, jet velocity to upstream velocity, of 0.525. The success of active flow control with a velocity ratio of 0.9 suggests there is potential for passive flow control to be effective. The research presented in this thesis is motivated by the potential savings in the applications of passive flow control in gas turbine axial compressors by increasing the aerodynamic load of each stage. Increased stage loading that is properly controlled can reduce the number of stages required to achieve the desired pressure compression ratio."
|
3 |
Experimental Investigation Of Boundary Layer Separation Control Using Steady Vortex Generator Jets On Low Pressure TurbinesDogan, Eda 01 June 2012 (has links) (PDF)
This thesis presents the results of an experimental study that investigates the effects of steady vortex generator jets (VGJs) integrated to a low pressure turbine blade to control the laminar separation bubble occurring on the suction surface of the blade at low Reynolds numbers. The injection technique involves jets issued from the holes located near the suction peak of the test blade which is in the middle of a five-blade low speed linear cascade facility. Three injection cases are tested with different blowing ratio values ranging from low to high. Surface pressure and particle image velocimetry (PIV) measurements are performed. The results show that steady VGJ is effective in eliminating the laminar separation bubble. Also it is observed that to have fully developed attached boundary layer, blowing ratio should be chosen accordingly since a very thin separation zone still exists at low blowing ratios.
|
4 |
Low Pressure Turbine Flow Control with Vortex Generator JetsWilliams, Charles P. 11 October 2016 (has links)
No description available.
|
5 |
A Global Approach to Turbomachinery Flow Control: Loss Reduction using Endwall Suction and Midspan Vortex Generator Jet BlowingBloxham, Matthew Jon 20 August 2010 (has links)
No description available.
|
6 |
Computational fluid-dynamics investigations of vortex generators for flow-separation controlvon Stillfried, Florian January 2012 (has links)
Many flow cases in fluid dynamics face undesirable flow separation due to ad-verse pressure gradients on wall boundaries. This occurs, for example, due togeometrical reasons as in a highly curved turbine-inlet duct or on flow-controlsurfaces such as wing trailing-edge flaps within a certain angle-of-attack range.Here, flow-control devices are often used in order to enhance the flow and delayor even totally eliminate flow separation. Flow control can e.g. be achieved byusing passive or active vortex generators (VGs) for momentum mixing in theboundary layer of such flows. This thesis focusses on such passive and activeVGs and their modelling for computational fluid dynamics investigations. First, a statistical VG model approach for passive vane vortex genera-tors (VVGs), developed at the Royal Institute of Technology Stockholm andthe Swedish Defence Research Agency, was evaluated and further improvedby means of experimental data and three-dimensional fully-resolved computa-tions. This statistical VVG model approach models those statistical vortexstresses that are generated at the VG by the detaching streamwise vortices.This is established by means of the Lamb-Oseen vortex model and the Prandtllifting-line theory for the determination of the vortex strength. Moreover, thisansatz adds the additional vortex stresses to the turbulence of a Reynolds-stresstransport model. Therefore, it removes the need to build fully-resolved three-dimensional geometries of VVGs in a computational fluid dynamics mesh. Usu-ally, the generation of these fully-resolved geometries is rather costly in termsof preprocessing and computations. By applying VVG models, the costs arereduced to that of computations without VVGs. The original and an improvedcalibrated passive VVG model show sensitivity for parameter variations suchas the modelled VVG geometry and the VVG model location on a flat plate inzero- and adverse-pressure-gradient flows, in a diffuser, and on an airfoil withits high-lift system extracted. It could be shown that the passive VG modelqualitatively and partly quantitatively describes correct trends and tendenciesfor these different applications. In a second step, active vortex-generator jets (VGJs) are considered. They were experimentally investigated in a zero-pressure-gradient flat-plate flow atTechnische Universitä̈t Braunschweig, Germany, and have been re-evaluated for our purposes and a parameterization of the generated vortices was conducted. Dependencies of the generated vortices and their characteristics on the VGJsetup parameters could be identified and quantified. These dependencies wereused as a basis for the development of a new statistical VGJ model. This modeluses the ansatz of the passive VVG model in terms of the vortex model, theadditional vortex-stress tensor, and its summation to the Reynolds stress ten-sor. Yet, it does not use the Prandtl lifting-line theory for the determinationof the circulation but an ansatz for the balance of the momentum impact thatthe VGJ has on the mean flow. This model is currently under developmentand first results have been evaluated against experimental and fully-resolvedcomputational results of a flat plate without pressure gradient. / <p>QC 20120511</p>
|
Page generated in 0.0827 seconds