1 |
Generation of cyber attack data using generative techniquesNidhi Nandkishor Sakhala (6636128) 15 May 2019 (has links)
<div><div><div><p>The presence of attacks in day-to-day traffic flow in connected networks is considerably less compared to genuine traffic flow. Yet, the consequences of these attacks are disastrous. It is very important to identify if the network is being attacked and block these attempts to protect the network system. Failure to block these attacks can lead to loss of confidential information and reputation and can also lead to financial loss. One of the strategies to identify these attacks is to use machine learning algorithms that learn to identify attacks by looking at previous examples. But since the number of attacks is small, it is difficult to train these machine learning algorithms. This study aims to use generative techniques to create new attack samples that can be used to train the machine learning based intrusion detection systems to identify more attacks. Two metrics are used to verify that the training has improved and a binary classifier is used to perform a two-sample test for verifying the generated attacks.</p></div></div></div>
|
2 |
Scenario Generation for Stress Testing Using Generative Adversarial Networks : Deep Learning Approach to Generate Extreme but Plausible ScenariosGustafsson, Jonas, Jonsson, Conrad January 2023 (has links)
Central Clearing Counterparties play a crucial role in financial markets, requiring robust risk management practices to ensure operational stability. A growing emphasis on risk analysis and stress testing from regulators has led to the need for sophisticated tools that can model extreme but plausible market scenarios. This thesis presents a method leveraging Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) to construct an independent scenario generator capable of modeling and generating return distributions for financial markets. The developed method utilizes two primary components: the WGAN-GP model and a novel scenario selection strategy. The WGAN-GP model approximates the multivariate return distribution of stocks, generating plausible return scenarios. The scenario selection strategy employs lower and upper bounds on Euclidean distance calculated from the return vector to identify, and select, extreme scenarios suitable for stress testing clearing members' portfolios. This approach enables the extraction of extreme yet plausible returns. This method was evaluated using 25 years of historical stock return data from the S&P 500. Results demonstrate that the WGAN-GP model effectively approximates the multivariate return distribution of several stocks, facilitating the generation of new plausible returns. However, the model requires extensive training to fully capture the tails of the distribution. The Euclidean distance-based scenario selection strategy shows promise in identifying extreme scenarios, with the generated scenarios demonstrating comparable portfolio impact to historical scenarios. These results suggest that the proposed method offers valuable tools for Central Clearing Counterparties to enhance their risk management. / Centrala motparter spelar en avgörande roll i dagens finansmarknad, vilket innebär att robusta riskhanteringsrutiner är nödvändiga för att säkerställa operativ stabilitet. Ökande regulatoriskt tryck för riskanalys och stresstestning från tillsynsmyndigheter har lett till behovet av avancerade verktyg som kan modellera extrema men troliga marknadsscenarier. I denna uppsats presenteras en metod som använder Wasserstein Generative Adversarial Networks med Gradient Penalty (WGAN-GP) för att skapa en oberoende scenariogenerator som kan modellera och generera avkastningsfördelningar för finansmarknader. Den framtagna metoden består av två huvudkomponenter: WGAN-GP-modellen och en scenariourvalstrategi. WGAN-GP-modellen approximerar den multivariata avkastningsfördelningen för aktier och genererar möjliga avkastningsscenarier. Urvalsstrategin för scenarier använder nedre och övre gränser för euklidiskt avstånd, beräknat från avkastningsvektorn, för att identifiera och välja extrema scenarier som kan användas för att stresstesta clearingmedlemmars portföljer. Denna strategi gör det möjligt att erhålla nya extrema men troliga avkastningar. Metoden utvärderas med 25 års historisk aktieavkastningsdata från S&P 500. Resultaten visar att WGAN-GP-modellen effektivt kan approximera den multivariata avkastningsfördelningen för flera aktier och därmed generera nya möjliga avkastningar. Modellen kan dock kräva en omfattande mängd träningscykler (epochs) för att fullt ut fånga fördelningens svansar. Scenariurvalet baserat på euklidiskt avstånd visade lovande resultat som ett urvalskriterium för extrema scenarier. De genererade scenarierna visar en jämförbar påverkan på portföljer i förhållande till de historiska scenarierna. Dessa resultat tyder på att den föreslagna metoden kan erbjuda värdefulla verktyg för centrala motparter att förbättra sin riskhantering.
|
3 |
Fast Simulations of Radio Neutrino Detectors : Using Generative Adversarial Networks and Artificial Neural NetworksHolmberg, Anton January 2022 (has links)
Neutrino astronomy is expanding into the ultra-high energy (>1017eV) frontier with the use of in-ice detection of Askaryan radio emission from neutrino-induced particle showers. There are already pilot arrays for validating the technology and the next few years will see the planning and construction of IceCube-Gen2, an upgrade to the current neutrino telescope IceCube. This thesis aims to facilitate that planning by providing faster simulations using deep learning surrogate models. Faster simulations could enable proper optimisation of the antenna stations providing better sensitivity and reconstruction of neutrino properties. The surrogates are made for two parts of the end-to-end simulations: the signal generation and the signal propagation. These two steps are the most time-consuming parts of the simulations. The signal propagation is modelled with a standard fully connected neural network whereas for the signal generation a conditional Wasserstein generative adversarial network is used. There are multiple reasons for using these types of models. For both problems the neural networks provide the speed necessary as well as being differentiable -both important factors for optimisation. Generative adversarial networks are used in the signal generation because of the inherent stochasticity in the particle shower development that leads to the Askaryan radio signal. A more standard neural network is used for the signal propagation as it is a regression task. Promising results are obtained for both tasks. The signal propagation surrogate model can predict the parameters of interest at the desired accuracy, except for the travel time which needs further optimisation to reduce the uncertainty from 0.5 ns to 0.1 ns. The signal generation surrogate model predicts the Askaryan emission well for the limited parameter space of hadronic showers and within 5° of the Cherenkov cone. The two models provide a first step and a proof of concept. It is believed that the models can reach the required accuracies with more work.
|
Page generated in 0.0292 seconds