• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An optimized mass value of dark matter particles based on ultra-high-energy cosmic rays

Hopp, Karla Marie 15 January 2007
Though the arrival directions of ultra-high-energy cosmic rays (UHECRs) are distributed in a relatively isotropic manner, there is evidence of small-scale anisotropy. This, combined with the detection of cosmic rays with energies above the GZK cut-off, has motivated us to further investigate the idea that UHECRs are the result of a top-down mechanism involving the annihilation of superheavy dark matter particles in our galactic halo. To more precisely characterize the nature of dark matter, we have endeavoured to apply two different models to the leading UHECR spectra, namely those from the AGASA, High Resolution Flys Eye, and Pierre Auger Collaborations. First, we attempt a non-linear, least-squares fit of the particle physics fragmentation function to the spectra. Second, we propose that the observed cosmic ray spectrum above 3.5 × 10E+18 eV is the superposition of flux from two different sources: bottom-up acceleration via a simple power-law relation at lower energies and scattered particles from dark matter annihilation governed by fragmentation functions at higher energies. We find that while the former model does not provide a satisfactory fit to observatory data, the latter yields reduced χ2 values between 1.14 and 2.6. From the fragmentation function component of our second model, we are able to extract estimates of dark matter particle mass. We find values of (1.2 ± 0.6) 10E+21 eV, (5.0 ± 4.3) 10E+20 eV, and (2.6 ± 1.5) 10E+21 eV respectively for the AGASA, HiRes, and Pierre Auger data, which agree with earlier predictions based on a cosmological analysis of non-thermal particle production in an inflationary universe. Furthermore, we verify that the dark matter particle densities required by our two-source model are in line with current CDM theory.
2

An optimized mass value of dark matter particles based on ultra-high-energy cosmic rays

Hopp, Karla Marie 15 January 2007 (has links)
Though the arrival directions of ultra-high-energy cosmic rays (UHECRs) are distributed in a relatively isotropic manner, there is evidence of small-scale anisotropy. This, combined with the detection of cosmic rays with energies above the GZK cut-off, has motivated us to further investigate the idea that UHECRs are the result of a top-down mechanism involving the annihilation of superheavy dark matter particles in our galactic halo. To more precisely characterize the nature of dark matter, we have endeavoured to apply two different models to the leading UHECR spectra, namely those from the AGASA, High Resolution Flys Eye, and Pierre Auger Collaborations. First, we attempt a non-linear, least-squares fit of the particle physics fragmentation function to the spectra. Second, we propose that the observed cosmic ray spectrum above 3.5 × 10E+18 eV is the superposition of flux from two different sources: bottom-up acceleration via a simple power-law relation at lower energies and scattered particles from dark matter annihilation governed by fragmentation functions at higher energies. We find that while the former model does not provide a satisfactory fit to observatory data, the latter yields reduced χ2 values between 1.14 and 2.6. From the fragmentation function component of our second model, we are able to extract estimates of dark matter particle mass. We find values of (1.2 ± 0.6) 10E+21 eV, (5.0 ± 4.3) 10E+20 eV, and (2.6 ± 1.5) 10E+21 eV respectively for the AGASA, HiRes, and Pierre Auger data, which agree with earlier predictions based on a cosmological analysis of non-thermal particle production in an inflationary universe. Furthermore, we verify that the dark matter particle densities required by our two-source model are in line with current CDM theory.

Page generated in 0.1045 seconds