1 |
Conception d'interfaces boitiers innovantes pour le radar automobile 77-GHz : Application à la conception optimisée d'une chaine de réception radar en boitier / Conception of innovative packages for 77-GHz automotive radar : Application to the design of an optimized packaged radar receiver channelSouria, Charaf-Eddine 22 February 2017 (has links)
Le développement des radars automobiles, à la bande de fréquences 76-77 GHz, a connu une croissance importante au cours de la dernière décennie. Les développements en cours doivent faire face à deux grands défis. Le premier défi est la réduction du coût pour équiper plus de catégories de voitures avec ces radars. Le deuxième défi est l'amélioration des performances du radar afin de satisfaire les demandes croissantes des autorités de sécurité routière et d'équiper la voiture autonome. L'émetteur-récepteur radar automobile constitue le cœur du système. Par conséquent, une pression importante est exercée sur les fournisseurs de semi-conducteurs pour développer des radars de nouvelle génération avec des performances supérieures et à un coût inférieur par rapport aux générations précédentes. Améliorer les performances de l'émetteur-récepteur passe par par l'amélioration de ces quatre paramètres : le facteur de bruit, le niveau de puissance de l'émetteur, le bruit de phase et la dissipation thermique. La réduction de coût peut être obtenue en réduisant le temps de test, les tailles de la puce et du PCB et le coût du boitier. Dans ce travail, nous proposons une réduction du coût du boitier et de la taille du PCB, en plus de l'amélioration de la dissipation thermique grâce à une encapsulation intégré au niveau plaquette (FI-WLP pour Fan-In Wafer Level Package). Le boitier WLCSP (Wafer Level Chip Scale Package), le plus connu FI-WLP, a été choisi pour cette application. C'est la première fois dans l'histoire des semi-conducteurs que le FI-WLP est utilisé pour du Silicium à des fréquences aussi élevées. Le premier chapitre décrit le système radar et ses principaux composants. Il met l'accent sur la contribution de l'émetteur-récepteur, puis le boitier, sur les performances du radar. Le deuxième chapitre fournit une méthodologie pour la modélisation électromagnétiques et la validation expérimentale de ces modèles, appliquée à des structures passives sur puce. Des innovations, améliorant significativement les performances électriques du boitier WLCSP, sont révélées dans le troisième chapitre. La caractérisation du WLCSP est en soi un défi. De nouvelles méthodologies de caractérisation de ce boitier sont alors proposées dans le même chapitre. Par la suite, un nouveau mélangeur encapsulé en WLCSP est conçu et présenté dans le quatrième chapitre. Le facteur de bruit obtenu est à l'état de l'art, malgré l'utilisation du très contraignant boitier FI-WLP. Tous les résultats de simulation de la transition WLCSP et du mélangeur sont validés par des mesures. Cette caractérisation confirme les excellentes performances attendues du boitier et du circuit conçus. / The development of automotive radars, at the frequency band 76-77 GHz, has experienced a significant growth over the last decade. Ongoing developments have to cope with two main challenges. The first challenge is reducing the cost to equip more car categories with these radars. The second challenge is to improve radar performance in order to satisfy the increasing demands of the road safety authorities and to equip the autonomous car. The automotive radar transceiver is the masterpiece of the system. Therefore, significant pressure is exerted on the semiconductor suppliers to develop next generation radars with superior performances and at lower cost than previous generations. Improving the radar transceiver performances requires improving these four main parameters: Noise Figure (NF), Power Amplifier (PA) power, Phase Noise (PN) and heat dissipation. Lowering the cost can be achieved by reducing test time, chip and PCB sizes, and wafers and package costs. We propose, in this work, a reduction of package cost and PCB size and improvement of heat dissipation by using a FI-WLP. The Wafer Level Chip Scale Package (WLCSP), the best known FI-WLP, was chosen for this application. It is the first time, in Silicon semiconductors history, that a FI-WLP is used at such high frequencies. The first chapter describes the radar system in general and its main components. It focuses on the contribution of the transceiver then the package to the radar performances. The second chapter provides a methodology for EM models validation based on the modeling and experimental validation of passive structures on-chip. Innovations, significantly improving the WLCSP electrical performances, are revealed in the third chapter. The characterization of WLP is, itself, a challenge and novel methodologies to perform it are proposed in the same chapter. Thereafter, a new WLCSP packaged mixer, where block core and RF input matching are co-optimized, is designed and presented in the fourth chapter. The obtained NF is at the state-of-the-art, whereas the very constraining FI-WLP is used. All WLCSP transition and mixer simulation results are validated through measurement. This characterization confirms the excellent performances expected from this novel package and circuit designs.
|
Page generated in 0.1152 seconds