• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Outcome Differences in the Wellness Management and Recovery Program: A Comparison of Community Mental Health Centers and Consumer-Operated Service Sites

Reed, Joseph A. January 2015 (has links)
No description available.
2

The Role of the Wellness Management and Recovery (WMR) Program in Promoting Social Support

Hupp, Danelle Renae January 2008 (has links)
No description available.
3

Haptic Tele-operation of Wheeled Mobile Robot and Unmanned Aerial Vehicle over the Internet

Zuo, Zhiyuan 01 August 2011 (has links)
Teleoperation of ground/aerial vehicle extends operator's ability (e.g. expertise, strength, mobility) into the remote environment, and haptic feedback enhances the human operator's perception of the slave environment. In my thesis, two cases are studied: wheeled mobile robot (MWR) haptic tele-driving over the Internet and unmanned aerial vehicle (UAV) haptic teleoperation over the Internet. We propose novel control frameworks for both dynamic WMR and kinematic WMR in various tele-driving modes, and for a "mixed" UAV with translational dynamics and attitude kinematics. The recently proposed passive set-position modulation (PSPM) framework is extended to guarantee the passivity and/or stability of the closed-loop system with time-varying/packet-loss in the communication; and proved performance in steady state is shown by theoretical measurements.For UAV teleoperation, we also derive a backstepping trajectory tracking control with robustness analysis. Experimental results for dynamic/kinematic WMR and an indoor quadrotor-type UAV are presented to show the efficacy of the proposed control framework.
4

The Relationship between the Wellness Management and Recovery Program and Physical Health

Tenbarge, Brittany A. January 2011 (has links)
No description available.
5

Novel Suspension Mechanisms For A Three Wheeled Mobile Robot Traversing Uneven Terrains Without Slip

Tharakeshwar, Appala 01 1900 (has links) (PDF)
A wheeled mobile robot (WMR) will move on uneven terrain without slip if the length of the axle connecting two wheels can change or for a fixed length axle the wheels are allowed to tilt in a lateral direction. In this work, we consider a three-wheeled mobile robot with torus shaped wheels capable of lateral tilting. Due to the requirement of lateral tilting a two degree of freedom (DOF) suspension, one for maintaining contact with terrain and one for lateral tilting, is assumed to connect the wheels to the WMR body. Six concepts of two DOF suspension mechanisms are proposed. A WMR with these suspension mechanisms are modeled and two kinds of simulations, namely, direct kinematic analysis and inverse kinematic analysis are performed on several uneven terrains with and without suspension. Slip velocity, the path followed and the lateral tilt angle are estimated as a function of time. The force-angle stability measure is used to check the tip-over instability of the WMR on uneven terrain. It is shown that without the two DOF suspensions and with the wheels not allowed to tilt laterally, the WMR is not capable of traversing uneven terrains without large slip. When the wheels are allowed to tilt laterally with a two DOF suspension, the wheeled mobile robot slips very little. Based on least slip and less deviation from desired path, it is shown that the two best possible suspension mechanisms are the SFTA suspension and D4Bar suspension. Two prototype of three-wheeled mobile robot with these suspensions are fabricated using some components from a readily available commercial kit and with especially designed and manufactured wheels with the two degrees of freedom suspension. Simulations on an uneven terrain verify that the three-wheeled mobile robot can traverse uneven terrains with very little slip for three representative paths, namely a straight line, a circular arc and a path representing a lane change. Experiments with the two prototypes on physically constructed uneven terrain, very similar to the one used for simulation, confirm that the slip is significantly reduced with the two degree of freedom suspensions. The path of the centre of mass of the WMRs, projected on uneven surface, and the error from the desired path is presented for all the three representative paths. The simulation and experimental results clearly show that the three wheeled mobile robot with the novel two DOF suspension mechanisms can traverse uneven terrain with low slip.

Page generated in 0.2789 seconds