• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Will Oakland Burn Again: Understanding the Fire Hazard in an Urban Park System

Zambrano, Alessandra M 01 June 2021 (has links) (PDF)
Though almost thirty years have passed since the 1991 Tunnel Fire, the wildfire hazard is still present in the Oakland Hills. This study was conducted to determine if the vegetation in the Oakland Hills had reverted back to fuel conditions that contributed to the Tunnel Fire, examine how the fire hazard has changed since 1991, and evaluate planned wildfire mitigation. The goal was to determine how fuel conditions have changed since 1991 and compare potential fire behavior to that of the Tunnel Fire. Additionally, the study examined the effectiveness of the mitigation actions described in the East Bay Regional Park District’s Wildfire Hazard Reduction and Resource Management Plan on lowering extreme fire behavior. Through the use of remote sensing, historical aerial imagery, satellite imagery, and Landsat imagery the 1991 and 2018 fuel conditions were analyzed. ArcGIS Pro and FlamMap 6 were used to compare hectares of fuel and changed in fire behavior between the two year. Mitigation actions were modeled with FlamMap 6 and ArcGIS Pro and fire behavior was compared between untreated conditions and post treatment conditions. The vegetation in the Oakland Hills, in the absence of fire, returned to a mature state, similar to the 1991 conditions. However, there was a reduction in the overall hectares of fuel model 147 in 2018. Modeled fire behavior indicated an overall reduction in extreme fire behavior when comparing 1991 to 2018. This reduction varied on a park level with each park performing differently. When modeled, mitigation was able to lower extreme fire behavior across the landscape but success varied on an individual park basis. In conclusion, should ignition occur presently, under foehn wind conditions, a fire would still exhibit very extreme behavior with a high potential for catastrophic loss, and implantation of planned mitigation measures may be able to lower the degree of extreme fire behavior.
2

Permanent Passive Fire Protection Against Wildland-Urban Interface Fires

Wilson, Makenzie 14 April 2023 (has links)
The average intensity and frequency of wildland fires have been on the rise over the years, leading to an increase in the risk to homes located in the Wildland-Urban Interface (WUI). Fire suppression is the most used method of wildland fire control, but this suppression can cause wildland fires to become more frequent and devastating. Increased development in the WUI also puts these homes at greater risk. Current methods of passive fire protection are effective, but these methods are expensive, time consuming to set up, and not fully effective. This research proposes a permanent passive fire protection system that is built into the structure. A flame- resistant material would be attached to the sheathing with the roofing and siding attached over the material. This system would allow the easily replaceable exterior components of the structure to burn, and the interior of the structure would be protected. This system protects the structural supports of the building, so the house does not collapse, and the exterior components can be replaced. To test this permanent passive fire protection system 21 small-scale specimens were constructed with five different flame-resistant materials and three different types of siding. The flame-resistant materials include structural wrap, Kaowool, ceramic fiber insulation, Pyrogel, and intumescent paint. The sidings include wood siding, vinyl siding, and hardie board. The testing took place in a burn room to simulate the conditions of a wildland fire. Post-burn charring evaluations and temperature analyses were conducted to determine which type of material and siding were most effective at protecting the small-scale models. The charring evaluation included determining the percent charring of the OSB face of the specimens, and the temperature analysis included determining the percent difference between the internal and external temperatures of the specimens. The performance, cost and installation, constructability, and replaceability of each of the materials were considered in deciding which materials were most effective. Overall, the Pyrogel outperformed the other materials, but this material is by far the most expensive. The ceramic fiber material was overall the second most effective flame-resistant material, and this material could be as effective as the Pyrogel if used in conjunction with the other materials tested. Further testing of material combinations is required to determine if different flame-resistant material combinations could be as effective as the Pyrogel material on its own. The results of this project did prove the feasibility of a permanent passive fire protection system, but further testing of large-scale specimens is required to test the effectiveness of the system in more complex circumstances.

Page generated in 0.0323 seconds