• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Water Budget and Solute Flux Budget for Waimea River Watershed, Kauai, HI, U.S.A.

Tolworthy, Joseph Harold 21 December 2020 (has links)
Waimea Canyon is a deep V-shaped canyon on the island of Kauai, Hawaii in which the Waimea River and its tributaries flow. The shape and size of the canyon are noteworthy and unusual compared to its contemporary canyons on the Hawaiian Islands which are usually U-shaped or flat bottomed. This could be because there is significantly more physical erosion in Waimea Canyon compared to others. A water budget was created using ArcGIS Pro and data from the University of Hawaii’s rainfall and evapotranspiration atlases, as well as from the United States Geological Survey’s stream gage data. A mass flux was estimated using ArcGIS pro by creating a paleosurface from the ridge points and then finding the mass difference between todays watershed and the watershed with the paleosurface. Weathering reactions were made to model the processes in the watershed. The reactants were found from using oxide percentages of Kauai basalts and inputting them into MELTs to estimate mineralogy. The products were found by analysis of soil and water samples in the area of the Canyon. In the Waimea River watershed approximately 159 t/km2 /yr is removed, of which 56% is by physical erosion. This was compared to the V-shaped Makaweli river watershed where approximately 12% is removed by physical erosion and in the U-shaped Hanalei watershed ≈ 68% is removed. While these differences could be explained by vegetation cover, precipitation, and slope steepness it shows that there is not more physical erosion in Waimea Canyon compared to the others. Thus, the origin of the V-shape of Waimea Canyon remains unexplained.
2

Sedimentology, stratigraphy and palaeogeography of Oligocene to Miocene rocks of North Canterbury-Marlborough

Irvine, Janelle Rose Mae January 2012 (has links)
The Cenozoic was a time of climatic, tectonic and eustatic change in the Southern Hemisphere. Cooling at the pole, glaciation and substantial sea ice formation occurred as latitudinal temperature gradients increased and tectonics altered Southern Hemisphere circulation patterns. During this same time frame, the tectonic regime of the New Zealand continental block transitioned from a passive margin to an active plate boundary, resulting in the reversal of a long-standing transgression and an influx of terrigenous sediment to marine basins. In this transition, depositional basins in the South Island became more localized; however, the influence of oceanographic and tectonic drivers is poorly understood on a local scale. Here we apply sedimentological, biostratigraphic and geochemical analyses to revise understanding of the effects of the changing climatic regime and active tectonics on the development of Oligocene and Miocene rocks in the Northern Canterbury Basin. The Late Oligocene to Middle Miocene sedimentary rocks of the northern Canterbury Basin record oceanographic and tectonic influences on basin formation, sediment supply and deposition. The Palaeocene to Late Eocene Amuri Formation in the basin are micrites and biogenic cherts recording deepwater, terrigenous-starved environments, and do not show any influence of active tectonics. The Early Oligocene development of ice on the Antarctic continent and the associated global sea level response is reflected in this basin as the Marshall Paraconformity, an eroded, glauconitized and phosphatised firm ground and hardground atop the Amuri. Sedimentation above this unconformity resumed in the Late Oligocene-Early Miocene with cleaner, deep-water, bathyal planktic foraminifera packstones and wackestones in eastern areas and Late Oligocene inner shelf volcaniclastic packstones in parts of the western basin. Post-unconformity sedimentation resumed earlier in western areas, as the currents responsible for scouring the sea floor moved progressively to the east. The development of tectonic uplift in terrestrial settings is first seen in the northwestern basin in Lower Miocene fine quartz-rich sandstones, and by the Middle Miocene, bathyal sandstones and quartz-rich wackestones appear in the basin, replacing earlier, more pure carbonates. The uplift caused shallowing to the west, in the form of shelf progradation due to sediment influx. This shallowing is not observed to the east; instead, the palaeoenvironments show a deepening as a result of sea level rise.

Page generated in 0.0352 seconds