• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Hydrodynamic Slip on the Wake Dynamics and Convective Transport in Flow Past a Circular Cylinder

Nidhil Mohamed, A R January 2017 (has links) (PDF)
Hydrodynamic slip is known to suppress vorticity production at the solid-fluid boundary in bluff body flows. This suppression combined with the enhanced vorticity convection results in a substantial reduction in the unsteady vortex shedding and the hydrodynamic loads experienced by the bluff body. Here, using combined theoretical and computational techniques, we investigate the effect of slip on three-dimensional wake dynamics and convective scalar transport from a circular cylinder placed in the uniform cross-flow of a Newtonian incompressible fluid over Reynolds numbers ranging from 0.1 to 1000. We find the wake patterns to be strongly influenced by the degree of the slip, quantified through the non-dimensional slip length in the Naiver slip model, with the asymptotic slip lengths of zero and infinity characterizing no-slip and no-shear boundaries, respectively. With increasing slip length, the wake three-dimensionality, that is observed in the case of a no-slip surface for Re > 190, is gradually suppressed and eventually eliminated completely. For each Reynolds number, we identify the critical slip length beyond which the three-dimensionality is completely suppressed and the wake becomes two-dimensional, on the basis of the total transverse entropy present in the flow field. Over the Reynolds number range considered in this work, we find the critical slip length to be an increasing function of Reynolds number. For sufficiently large slip lengths, we observe suppression of two-dimensional vortex shedding leading to formation of a steady separated wake. Further increments in slip length lead to reduction in the intensity and size of the recirculating eddy pair eventually resulting in its complete disappearance for a no-shear surface for which the flow remains attached all along the cylinder boundary. Next, we quantify the effect of hydrodynamic slip on convective transport from an isothermal circular cylinder placed in the uniform cross flow of an incompressible fluid at a lower temperature. For low Reynolds and high P´eclet numbers, theoretical analysis based on Oseen and thermal boundary layer equations allows us to obtain explicit relationships for the dependence of transport rate on the prescribed slip length. We observe that the non-dimensional transport coefficients follow a power law scaling with respect to the P´eclet number, with the scaling exponent increasing gradually from the lower asymptotic limit of 1/3 for the no-slip surface to 1/2 for a no-shear boundary. Results from our simulations at finite Reynolds number indicate that the local time-averaged transport rates for a no-shear surface exceed the one for the no-slip surface all along the cylinder except in the neighbourhood of the rear stagnation region, where flow separation and reversal augment the transport rates substantially.
2

Flying snakes: Aerodynamics of body cross-sectional shape

Holden, Daniel Patrick 26 May 2011 (has links)
Chrysopelea paradisi, also known as the flying snake, possesses one of the most unique forms of aerial locomotion found in nature, using its entire body as a dynamic lifting surface without the use of wings or membranes. Unlike other airborne creatures, this species lacks appendages to aid in controlling its flight trajectory and producing lift. The snake exhibits exception gliding and maneuvering capabilities compared with other species of gliders despite this lack of appendages. While gliding, C. paradisi morphs its body by expanding its ribs, essentially doubling its width and utilizing its entire length as a reconfigurable wing. Its cross-sectional shape transforms into a thick, airfoil shape with a concave ventral surface, outwards protruding lips at the leading and trailing edges, a somewhat triangular dorsal surface with a round apex, and fore-aft symmetry. This study investigated the aerodynamic performance of this unique shape by simulating a single, static segment of the snake's body over a wide range of Reynolds numbers (3,000 to 15,000) and angles of attack (-10 to 60o) to simulate the full range of the snake's flight kinematics. This is the first study on an anatomically accurate snake model, and few aerodynamic studies have been performed in this low Reynolds number regime. Load cell measurements and time-resolved digital particle image velocimetry (TRDPIV) were performed on a 2D anatomically accurate model to determine the lift and drag coefficients, wake dynamics, and vortex shedding characteristics. This geometry produced a maximum lift coefficient of 1.9 and maximum lift to drag ratio of 2.7, and maintained increases in lift up to 35o. Overall, this geometry demonstrated robust aerodynamic behavior by maintain significant lift production and near maximum lift to drag ratios over a wide range of test parameters. These aerodynamic characteristics may enable the flying snake to glide at steep angles and over a wide range of angles of attack, often encountered in gliding trajectories. This geometry also produced larger maximum lift coefficients than many other bluff bodies and airfoils in this low Reynolds number regime. This thesis is organized as follows. The first section contains a broad introduction on gliding flight and C. paradisi's unique mode of gliding. The following section is a manuscript that will be submitted to a journal and contains the experimental analysis on the snake's cross-sectional shape. Several appendices attached to the end of this thesis contain additional analysis and work performed throughout the duration of this project and unique Matlab algorithms developed during this research. / Master of Science

Page generated in 0.0514 seconds