• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An analysis of modular patterns in healthy and post-stroke hemiparetic gait

Routson, Rebecca Linn 06 November 2014 (has links)
Recent studies have suggested the biomechanical subtasks of walking can be produced using a reduced set of co-excited muscles or modules. Individuals post-stroke often exhibit poor inter-muscular coordination characterized by poor timing and merging of modules that are normally independent in healthy individuals. However, whether locomotor therapy can influence module quality (timing and composition) and whether these improvements lead to improved walking performance is unclear. Further, it is unknown whether the same modules that produce self-selected walking can also produce the execution of different mobility tasks. In this study, experimental analyses were used to compare module quality pre- and post-therapy. In subjects with four modules pre- and post-therapy, locomotor training resulted in improved timing of the ankle plantarflexor module and a more extended paretic leg angle that allowed the subjects to walk faster with more symmetrical propulsion. In addition, subjects with three modules pre-therapy increased their number of modules and improved walking performance post-therapy. Thus, locomotor training was found to influence module composition and timing, which can lead to improvements in walking performance. Experimental and simulation analyses were then used to characterize modular organization in specific mobility tasks (walking at self-selected speed with maximum cadence, maximum step length, and maximum step height). We found that the same underlying modules (number and composition) in each subject that contribute to steady-state walking also contribute to the different mobility tasks. In healthy subjects, module timing, but not composition, changed when the task demands were altered. This adaptability in module timing, in addition to the ability to adapt to the changing task demands, was limited in the post-stroke subjects. The primary difference in the execution of the walking biomechanical subtasks occurred in the control of the leg during pre-swing and swing. To increase cadence, the ankle plantarflexors and dorsiflexors contributed more power to the ipsilateral leg in pre-swing and swing, respectively. To increase step height, the hamstrings provided energy to the ipsilateral leg that accelerated the leg into swing in pre-swing and swing. These results provide a first step towards linking impaired module patterns to mobility task performance in persons post-stroke. / text
2

Simulation and experimental analyses to assess walking performance post-stroke using step length asymmetry and module composition

Allen, Jessica Lynn 20 November 2012 (has links)
Understanding the underlying coordination mechanisms that lead to a patient’s poor walking performance is critical in developing effective rehabilitation interventions. However, most common measures of rehabilitation effectiveness do not provide information regarding underlying coordination mechanisms. The overall goal of this research was to analyze the relationship between two potential measures of walking performance (step length asymmetry and module composition) and underlying walking mechanics. Experimental analyses were used to analyze the walking mechanics of hemiparetic subjects grouped by step length asymmetry. All groups had impaired plantarflexor function and the direction of asymmetry provided information regarding the compensatory mechanism used to overcome this plantarflexor impairment. Those subjects who walked with longer paretic than nonparetic steps compensated using increased output from the nonparetic leg, while those with symmetric steps compensated using a bilateral hip strategy. These results suggest that step length asymmetry may provide information regarding underlying coordination mechanisms that can be used to guide rehabilitation efforts. Another way to assess walking performance is to directly analyze deficits in muscle coordination. Recent studies have suggested that complex muscle activity during walking may be generated using a reduced neural control strategy organized around the co-excitation of multiple muscles, or modules, which may provide a useful framework for characterizing coordination deficits. Simulation analyses using modular control were performed to understand how modules contribute to important biomechanical functions of non-impaired walking and how the generation of these functions is altered in groups of post-stroke hemiparetic subjects who commonly merged different sets of non-impaired modules. The non-impaired simulation found that six modules are needed to generate the three-dimensional tasks of walking (support, forward propulsion, mediolateral balance control and leg swing control). When the plantarflexor module was merged with the module controlling the knee extensors and hip abductors, forward propulsion and ipsilateral leg swing were impaired. When the module controlling the hamstrings was merged with the module controlling the knee extensors and hip abductors, forward propulsion, body support and mediolateral balance control were impaired. These results suggest that module analysis may provide useful information regarding the source of walking deficits and can be used to guide rehabilitation efforts. / text

Page generated in 0.1036 seconds