• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Investigation of Electric Fields in Sandstorms

Rahman, Mustafa M. 12 1900 (has links)
Sandstorms are frequently accompanied by intense electric fields and lightning. In a very narrow region close to the ground, sand particles undergo a charge exchange during which larger-sized sand grains become positively charged and smaller-sized sand grains become negatively charged and then all particles become suspended by the turbulent fluid motion. Although the association of intense electric fields with sandstorms has long been observed, the mechanism that causes these intense electric fields has not yet been described. Here, we hypothesize that differently sized sand particles are differentially transported by turbulence in the flow, resulting in a large-scale charge separation and a consequential large-scale electric field. To confirm our hypothesis, we combined a large-eddy simulation framework comprising a turbulent atmospheric boundary layer and movement of sand particles with an electrostatic Gauss law to investigate the physics of the electric fields in sandstorms. We varied the strength of the sandstorm from weak to strong as parametrized by the number density of the entrained sand particles. Our simulations reproduced observational measurements of both mean and root mean squared fluctuation values of the electric field. Our results allowed us to propose a law in which the electric field scales to two-thirds of the power of the concentration of the sand particles in weak-to-medium strength sandstorms. The underlying approach to simulate the solid particle-laden flow is Eulerian-Eulerian in which the particles are characterized by statistical descriptors. To explore the essential physics of the electric field generation in a sandstorm, we model the high-Reynolds-number atmospheric boundary-layer (ABL) using two different canonical turbulent flows: one model is that of a turbulent boundary-layer (TBL), and the second one is that of a turbulent half-channel flow. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the abscissas and weights of the quadrature method are tracked directly. The utilization of this framework is proposed to examine the transport of sand in sandstorms. Furthermore, the physical mechanisms necessary for production and sustenance of large-scale electric fields in sandstorms is investigated.
2

Wall Modeled Large Eddy Simulation of Flow over a Wall Mounted Hump

Dilip, Deepu 02 July 2014 (has links)
Large Eddy Simulation (LES) is a relatively more accurate and reliable alternative to solution of Reynolds Averaged Navier Stokes (RANS) equations in simulating complex turbulent flows at a lesser computational cost than a direct numerical simulation (DNS). However, LES of wall-bounded flows still requires a very high grid resolution in the inner wall layer making its widespread use difficult. Different attempts have been made in the past time to overcome this problem by modeling the near wall turbulence instead of resolving it. One such approach is a two-layer wall model that solves for a reduced one-dimensional equation in the inner wall layer, while solving for the filtered Navier-Stokes equations in the outer layer. The use of such a model allows for a coarser grid resolution than a wall resolved LES. This work validates the performance of a two-layer wall model developed for an arbitrary body fitted non-orthogonal grid in the flow over a wall mounted hump at Reynolds number 9.36x105. The wall modeled large eddy simulation (WMLES) relaxes the grid requirement compared to a wall resolved LES (WRLES) by allowing the first off-wall grid point to be placed at a y+ of approximately 20-40. It is found that the WMLES results are general good agreement with WRLES and experiments. Surface pressure coefficient, skin friction, mean velocity profiles, and the reattachment location compare very well with experiment. The WMLES and WRLES exhibit some under prediction of the peak values in the turbulent quantities close to the reattachment location, with better agreement with the experiment in the separated region. In contrast, a simulation that did not employ the wall model on the grid used for WMLES failed to predict flow separation and showed large discrepancies with the experimental data. In addition to the relaxation of the grid requirement in the wall normal direction, it was also observed that the wall model allowed a reduction in the number of computational cells in the span-wise direction by half. However an LES calculation on a grid with reduced number of cells in span-wise direction turned unstable almost immediately, thereby highlighting the effectiveness of the wall model. Besides reducing the number of grid points in the spatial domain, the relaxed grid resolution for the WMLES also permitted the use of a larger time step. This resulted in an order of magnitude reduction in the total CPU time relative to WRLES. / Master of Science

Page generated in 0.1065 seconds