• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing Prefabricated, Light-weight CLT Exterior Wall Panels for Mid-rise Buildings

Sharifniay Dizboni, Houri 10 June 2024 (has links)
The building construction industry has seen the emergence of Cross Laminated Timber (CLT) as a renewable replacement for structural application of steel, concrete, and masonry. However, CLT has not been researched extensively as a nonstructural component of the building envelope/facade. In the presented research, the application of CLT is introduced in the form of lightweight CLT (CLT-L) panels and presents a framework to evaluate the opportunities and application of CLT-L panels as an alternative construction method for non-load-bearing exterior wall systems. Since exterior walls as part of the enclosure system have a significant role in energy consumption and human comfort level, the research evaluates application opportunities of the CLT panels for US climates, by conducting a life cycle environmental analysis, and a thermal evaluation of CLT-L systems for Phoenix, Arizona, and Minneapolis, Minnesota. The life cycle analysis was conducted to assess the environmental impact of a typical CLT wall system as compared to three conventional panelized wall systems. The results of the analysis have shown that CLT wall systems exhibit the lowest cumulative life cycle environmental impact indicators, including acidification potential, fossil fuel consumption, global warming potential, and human health particulate when compared to other wall systems. These results suggest that CLT wall systems could be a viable alternative to conventional panelized exterior wall systems from an environmental impact perspective. In the next step, a parametric study was conducted to determine the optimal configuration of a CLT-L wall system for enhanced thermal performance. This was achieved through dynamic thermal simulations by employing the conduction transfer algorithm and analyzing various thicknesses and locations of the thermal insulation layer. Through analysis of the annual thermal transmission load and decrement factor, the optimum insulation thicknesses for CLT wall systems in two climate regions were determined. The results showed that the exterior insulation location yields better thermal efficiency. The results of this phase were employed in the development of the CLT wall system model and conduction of a comparative parametric study on the thermal mass behavior of CLT and CMU wall systems via finite difference algorithm. One significant outcome of the simulation data analysis was the heat transfer dynamics within the CLT and CMU wall system when exterior insulation is applied. The analysis revealed that in the presence of exterior insulation, the CLT layer continues to be the primary contributor to the reduced thermal transmission of the wall. However, in the CMU mass wall configuration, the insulation layer assumes a dominant role in the reduced thermal transmission of the wall. The findings of this research present CLT as a potential environmentally efficient envelope alternative for framed buildings and provide insights into the thermal performance of CLT wall systems, which can lead to the opening of a new market for CLT panel application in the U.S. / Doctor of Philosophy / The construction industry has witnessed a notable shift with the advent of Cross Laminated Timber (CLT), presenting itself as a renewable substitute for conventional materials like steel, concrete, and masonry in structural applications. However, the potential of CLT as a building component, particularly as a component of building exteriors wall, remains relatively underexplored. This research endeavors to fill this gap by introducing lightweight CLT (CLT-L) panels, which are three-layer CLT panels, and exploring their viability as an alternative construction method for non-load-bearing exterior wall systems. Non-load bearing exterior wall panels do not carry any structural support for the building. Recognizing the significant influence of exterior walls on both energy consumption and human comfort levels, the study assesses the applicability of CLT panels across diverse climates in the United States including states Minnesota and Arizona which show exterior temperature swings. The investigation began by conducting a comprehensive life cycle environmental analysis, comparing the environmental impact of a typical CLT wall system with three conventional panelized wall systems. Results revealed that CLT wall systems exhibit the lowest cumulative life cycle environmental impact indicators suggesting their potential as a sustainable alternative. The environmental indicators included acidification potential, fossil fuel consumption, global warming potential, and human health particulates. Subsequently, a parametric study delved into optimizing the thermal performance of CLT-L wall systems through dynamic thermal simulations. The dynamic simulation considered the exterior temperature changes during the day. By varying insulation thicknesses and locations, the study identifies optimal configurations for different climate regions. Notably, the analysis underscores the efficacy of exterior insulation placement in enhancing thermal efficiency. Furthermore, the study investigated the thermal mass behavior of CLT compared to concrete block (CMU) wall systems under different scenarios. Findings revealed that while CLT retains its significance as a primary contributor to thermal mass, particularly with exterior insulation, CMU configurations see a shift in thermal mass dynamics towards the insulation layer. These findings collectively underscored the potential of CLT as an environmentally efficient envelope alternative for framed buildings, shedding light on its thermal performance and paving the way for broader adoption in the US construction industry.

Page generated in 0.1006 seconds