21 |
Aumento da eficiência de um dispositivo eletro-hidrodinâmico através da alteração das características geométricas do eletrodo ativo / Increased efficiency of an electro-hydrodynamic device by changing the geometric characteristics of the active electrodeCroce, José Antonio Garcia 31 October 2014 (has links)
Forças eletro-hidrodinâmicas apresentam boas qualidades para a utilização como meio de produzir e manipular escoamentos. Um de seus grandes méritos consiste na falta de partes móveis para a introdução de quantidade de movimento em escoamentos. Foi realizado um estudo experimental para a investigação e comparação de três diferentes configurações dos eletrodos usados para a produção de dispositivos eletro-hidrodinâmicos gerados por descarga de barreira dielétrica. Uma configuração é composta de eletrodos retangulares planos e a outra de um fio e um eletrodo retangular plano. A outra configuração usa uma nova configuração com um eletrodo plano de borda serrilhada, como eletrodo ativo, e um eletrodo retangular plano isolado. Todas as configurações foram investigados para entender o comportamento na produção de escoamento. Medições de tubo Pitot dos perfis de velocidade dos jatos de parede foram feitas em várias distâncias a partir da região da descarga elétrica. Na sequência, a medição do escoamento ao longo do eletrodo serrilhado foi realizada. Assim, pretende-se determinar as características de escoamento tridimensionais produzidas por esta configuração. Os resultados mostram melhores características da configuração serrilhado para ser utilizado na produção de escoamento mais intensos. / Electro-hydrodynamic forces have good qualities to be used to produce and manipulate flows. One of its great merits is the lack of moving parts to introduce momentum in flows. An experimental study for measure and comparing three different configurations of electrodes used for the production of electro-hydrodynamic devices generated by dielectric barrier discharge was performed. One configuration is composed of rectangular at electrodes and the other of a wire electrode and a rectangular at electrode. The other uses a new configuration with a serrated edge flat plane electrode, as the active electrode and an isolated rectangular flat. All configurations are investigated to understand the behavior in the production of the flow. Pitot tube measurements of velocity profiles of the wall jets are made at various distances away from the electrical discharge region. Further, the measurement of the flow along the serrated electrod is performed. Thus, it is intended to determine the three-dimensional flow characteristics produced by this configuration. The results show the best features of serrated configuration to be used in the production of more intense flow.
|
22 |
Investigation of flow upstream of hydropower intakesIslam, Md Rashedul Unknown Date
No description available.
|
23 |
Turbulent jets in confined spaces : application in mixing ventilation: experimental and numerical studiesKarimipanah, Taghi January 1996 (has links)
The basis of mixing ventilation is the airflow supply to the room by means of jets initiatedfrom the ventilation diffusers. To avoid the draught problem, the design of mixing ventilationmakes uses the throw term, which is defined as the distance to the supply air terminal inwhich the jet centreline mean velocity is decreased to a given value. Traditionally, the throw ismeasured by the supply air device manufacturer. The throw is applied by designers to estimatethe velocity levels in the occupied zone. A standard for determining the throw is the CENstandard CEN/TC156/WG4 N86 "Draft Standard. Air terminal Devices. AerodynamicsTesting And Rating For Mixed Flow Application".The measurement of the throw is very time consuming even with the free jets and theinfluence of the room (the effect of confinement) is not considered. The objective of thepresent study is to give a basis for modifying the existing design and testing method used topredict the velocities in the occupied zone during the design process. A new method whichmay probably be more easier than the existing methods and at the same time give a betterprecision by including the confinement effect.In this thesis two methodological systems of experiment and numerical simulations have beenused. The numerical predictions are used in comparison with the measurements. Thereasonable agreement of the above mentioned methods is implemented to numerical study ofthe other room configurations which are not experimentally studied. This examining methodallows the possibility of studying a lot of configurations and in this manner generalising of theresults. Although the experimental part was made for both model-scale and full-scale testrooms, a large amount of data was obtained for a new test room whose dimension aresystematically varied. All of studies have been made for the isothermal case and themeasurements of velocities and pressures conducted along the room perimeters. The effect ofshort and deep rooms on the properties of the jet ( velocities, pressure, integral scale, jetmomentum, the rate of spreading of jet and turbulence intensities) have been carried out.Some old and recent investigations have been examined. Specially the concept of correlationsfrom open to closed rooms is criticised. It is also shown that the flow field in a confined roomis affected by many other factors than the Reynolds number. The surface pressure on theperimeters was used to calculate the reaction forces at the corners which causes recirculatingbubbles at corners. A study of the turbulent axisymmetric jet which is the basic element inturbulent shear flows and some restrictions of the traditional measurement techniques at theregion of interest in ventilation applications are discussed. The jet momentum is measured byweighing on a balance. Also a study of jets which collide with a wall , that is impinging jet,the effect of walls and confinement on the jet momentum have experimentally andnumerically been carried out. A new momentum balance model was developed for both thefree jet and confined one. An empirical relation has been found for estimation of the room’srotation centre which is used for validation of CFD results.Finally, it is found that the jets in a ventilated room which are a combination of free jet, walljet and impinging jet differ from the traditional wall jets. The rate of spreading of the jet andthe maximum velocity decay in a ventilated room are also different depending on the roomsize and its confinement.
|
24 |
Numerical studies of turbulent flames in wall-jet flowsPouransari, Zeinab January 2015 (has links)
The present thesis deals with the fundamental aspects of turbulent mixing and non-premixed combustion in the wall-jet flow, which has a close resemblance to many industrial applications. Direct numerical simulations (DNS) of turbulent wall-jets with isothermal and exothermic reactions are performed. In the computational domain, fuel and oxidizer enter separately in a nonpremixed manner and the flow is compressible, fully turbulent and subsonic. The triple “turbulence-chemistry-wall” interactions in the wall-jet flow have been addressed first by focusing on turbulent flow effects on the isothermal reaction, and then, by concentrating on heat-release effects on both turbulence and flame characteristics in the exothermic reaction. In the former, the mixing characteristics of the flow, the key statistics for combustion and the near-wall effects in the absence of thermal effects are isolated and studied. In the latter, the main target was to identify the heat-release effects on the different mixing scales of turbulence. Key statistics such as the scalar dissipation rates, time scale ratios, two-point correlations, one and two-dimensional premultiplied spectra are used to illustrate the heat release induced modifications. Finer small mixing scales were observed in the isothermal simulations and larger vortical structures formed after adding significant amounts of heat-release. A deeper insight into the heat release effects on three-dimensional mixing and reaction characteristics of the turbulent wall-jet flow has been gained by digging in different scales of DNS datasets. In particular, attention has been paid to the anisotropy levels and intermittency of the flow by investigating the probability density functions, higher order moments of velocities and reacting scalars and anisotropy invariant maps for different reacting cases. To evaluate and isolate the Damkohler number effects on the reaction zone structure from those of the heat release a comparison between two DNS cases with different Damkohler numbers but a comparable temperature rise is performed. Furthermore, the wall effects on the flame and flow characteristics, for instance, the wall heat transfer; the near-wall combustion effects on the skin-friction, the isothermal wall cooling effects on the average burning rates and the possibility of formation of the premixed mode within the non-premixed flame are addressed. The DNS datasets are also used for a priori analysis, focused on the heat release effects on the subgrid-scale (SGS) statistics. The findings regarding the turbulence small-scale characteristics, gained through the statistical analysis of the flow have many phenomenological parallels with those concerning the SGS statistics. Finally, a DNS of turbulent reacting wall-jet at a substantially higher Reynolds number is performed in order to extend the applicability range for the conclusions of the present study and figuring out the possible differences. / <p>QC 20150225</p>
|
25 |
Investigation of flow upstream of hydropower intakesIslam, Md Rashedul 06 1900 (has links)
This thesis is primarily focused on flow-field upstream of hydropower intakes, with emphasis on the use of temperature control curtains and predicting the flow acceleration zone. By reviewing the available literature, it is concluded that the flow-field upstream of hydropower intake systems can be modeled by potential flow theory. The understanding of near intake flow-field can be useful in fish entrainment studies and in designing fish repulsion systems. To control downstream river temperatures, a flexible curtain was installed upstream of several dams in California. Flow downstream of the curtain was analyzed using a Computational Fluid Dynamic (CFD) solver with rigorous validation by experimental data. The experiment was conducted with a 4 beam Acoustic Doppler Velocimeter (ADV) probe. The study shows that wall jet properties downstream of the curtain are affected by the water depth and the inlet Reynolds number. Empirical expressions were developed to predict jet properties and the wall shear stress. Flow upstream of the curtain was analyzed using potential flow theories with validation by the CFD solver. In this part, a theory based on Schwarz-Christoffel transformation was developed to predict the flow-field upstream of the curtain without accounting for any density stratification in the water body. It is observed that the acceleration zone upstream of the curtain can be affected by sink opening size, its location and water depth. The effect of boundaries on flow upstream of a line sink and the interaction of multiple sinks were analyzed. The effect of stratification on a line sink is also analyzed. A theory is developed to predict the incipient withdrawal condition when a sink is located on the horizontal bottom. The theory is also extended to a tilted bottom. The effect of boundaries on the incipient withdrawal condition is analyzed. When only one layer is being withdrawn, it is shown that a homogenous equation can be applied to a stratified condition by assuming an upper layer boundary at the interface. In addition to these works, a despike algorithm for ADV data is developed, and a numerical analysis on central difference scheme is presented. / Water Resources Engineering
|
26 |
Aumento da eficiência de um dispositivo eletro-hidrodinâmico através da alteração das características geométricas do eletrodo ativo / Increased efficiency of an electro-hydrodynamic device by changing the geometric characteristics of the active electrodeJosé Antonio Garcia Croce 31 October 2014 (has links)
Forças eletro-hidrodinâmicas apresentam boas qualidades para a utilização como meio de produzir e manipular escoamentos. Um de seus grandes méritos consiste na falta de partes móveis para a introdução de quantidade de movimento em escoamentos. Foi realizado um estudo experimental para a investigação e comparação de três diferentes configurações dos eletrodos usados para a produção de dispositivos eletro-hidrodinâmicos gerados por descarga de barreira dielétrica. Uma configuração é composta de eletrodos retangulares planos e a outra de um fio e um eletrodo retangular plano. A outra configuração usa uma nova configuração com um eletrodo plano de borda serrilhada, como eletrodo ativo, e um eletrodo retangular plano isolado. Todas as configurações foram investigados para entender o comportamento na produção de escoamento. Medições de tubo Pitot dos perfis de velocidade dos jatos de parede foram feitas em várias distâncias a partir da região da descarga elétrica. Na sequência, a medição do escoamento ao longo do eletrodo serrilhado foi realizada. Assim, pretende-se determinar as características de escoamento tridimensionais produzidas por esta configuração. Os resultados mostram melhores características da configuração serrilhado para ser utilizado na produção de escoamento mais intensos. / Electro-hydrodynamic forces have good qualities to be used to produce and manipulate flows. One of its great merits is the lack of moving parts to introduce momentum in flows. An experimental study for measure and comparing three different configurations of electrodes used for the production of electro-hydrodynamic devices generated by dielectric barrier discharge was performed. One configuration is composed of rectangular at electrodes and the other of a wire electrode and a rectangular at electrode. The other uses a new configuration with a serrated edge flat plane electrode, as the active electrode and an isolated rectangular flat. All configurations are investigated to understand the behavior in the production of the flow. Pitot tube measurements of velocity profiles of the wall jets are made at various distances away from the electrical discharge region. Further, the measurement of the flow along the serrated electrod is performed. Thus, it is intended to determine the three-dimensional flow characteristics produced by this configuration. The results show the best features of serrated configuration to be used in the production of more intense flow.
|
27 |
The Effect of Wall Jet Flow on Local Scour HoleGhoma, Mohamed I. January 2011 (has links)
This thesis reports on investigations carried out to study of the effect of horizontal wall jets on rough, fixed and mobile beds in open channel flow. Experimental tests were carried out, using fixed and mobile sediment beds. Computer simulation models for the flow within the jet and resulting sediment transport were developed and their results analysed in this study.
In the experimental phase, tests were carried out with both fixed and mobile sediment beds. The shape of the water surface, numerous point velocity measurements and measurements of the evolving scour hole shape were made. Detailed descriptions of the turbulent flow field over a fixed rough bed and for scour holes at equilibrium were obtained for a range of initial jet conditions. Fully turbulent, multiphase flow was modelled using the Fluent Computational Fluid Dynamics software. This was used to analyze the flow caused by a jet in a rectangle open-channel with a rough bed, and also the flow pattern in a channel with a local scour hole. The volume of fluid (VOF) multiphase method and K- model was used to model the fluid flow in both cases. The model predictions of velocity and shear stress were compared against experimental observations.
The experimental data was used to develop new empirical relationships to describe the pattern of boundary shear stress caused by a wall jet over fixed beds and in equilibrium scour holes. These relationships were linked with existing bed-load transport rate models in order to predict the temporal evolution of scour holes. An analytical model describing the relationship between the wall jet flow and the development of a local scour hole shape was reported and its predictions compared with experimental data.
|
28 |
Bio-Inspired Trailing Edge Noise Control: Acoustic and Flow MeasurementsMillican, Anthony J. 09 May 2017 (has links)
Trailing edge noise control is an important problem associated mainly with wind turbines. As turbulence in the air flows over a wind turbine blade, it impacts the trailing edge and scatters, producing noise. Traditional methods of noise control involve modifying the physical trailing edge, or the scattering efficiency. Recently, inspired by the downy covering of owl feathers, researchers developed treatments that can be applied to the trailing edge to significantly reduce trailing edge noise. It was hypothesized that the noise reduction was due to manipulating the incoming turbulence, rather than the physical trailing edge itself, representing a new method of noise control. However, only acoustic measurements were reported, meaning the associated flow physics were still unknown. This thesis describes a comprehensive wall jet experiment to measure the flow effects near the bio-inspired treatments, termed “finlets” and “rails,” and relate those flow effects to the noise reduction. This was done using far-field microphones, a single hot-wire probe, and surface pressure fluctuation microphones. The far-field noise results showed that each treatment successfully reduced the noise, by up to 7 dB in some cases. The surface pressure measurements showed that the spanwise coherence was slightly reduced when the treatments were applied to the trailing edge. The velocity measurements clearly established the presence of a shear layer near the top of the treatments. As a whole, the dataset led to the shear-sheltering hypothesis: the bio-inspired treatments are effective based on reducing the spanwise pressure correlation and by sheltering the trailing edge from turbulent structures with the shear layer they create. / Master of Science / This thesis describes a project aimed at developing a technology inspired by the silent flight of owls, with the end goal of using this technology to reduce the noise generated by wind turbines. Specifically, the phenomenon known as "trailing edge noise" is the primary source of wind turbine noise, and is the noise source of interest here. It occurs when air turbulence (which can be thought of as unsteady air fluctuations) crashes into the rear (trailing) edge of wind turbine blades, scattering and producing noise. Typically, methods of reducing this noise source involve changing the shape of the trailing edge; this may not always be practical for existing wind turbines. Recently, inspired by the downy covering of owl feathers, researchers developed treatments that can be applied directly to the trailing edge, significantly reducing trailing edge noise. This bio-inspired concept was verified with numerous acoustic measurements. Based on those measurements, researchers hypothesized that the noise reduction was achieved by manipulating the incoming turbulence before it scattered off the trailing edge, rather than by changing the existing wind turbine blade, representing a new method of trailing edge noise control. However, as only acoustic measurements (not flow measurements) were reported, the changes in turbulence could not be examined.
With the above motivation in mind, this thesis describes a comprehensive wind tunnel experiment to measure the changes in the aerodynamics and turbulence near the bio-inspired treatments, and relate those changes to the reduction in trailing edge noise. This was done using a hot-wire probe to measure the aerodynamics, as well as microphones to measure the radiated noise and surface pressure fluctuations. As a whole, the experimental results led to the shear-sheltering hypothesis: the bio-inspired treatments are effective based on the creation of a shear layer (a thin region between areas with different air speeds) which shelters the trailing edge from some turbulence, as well as by de-correlating surface pressure fluctuations along the trailing edge.
|
29 |
Numerical studies of transtion in wall-bounded flowsLevin, Ori January 2005 (has links)
Disturbances introduced in wall-bounded flows can grow and lead to transition from laminar to turbulent flow. In order to reduce losses or enhance mixing in energy systems, a fundamental understanding of the flow stability and transition mechanism is important. In the present thesis, the stability, transition mechanism and early turbulent evolution of wall-bounded flows are studied. The stability is investigated by means of linear stability equations and the transition mechanism and turbulence are studied using direct numerical simulations. Three base flows are considered, the Falkner-Skan boundary layer, boundary layers subjected to wall suction and the Blasius wall jet. The stability with respect to the exponential growth of waves and the algebraic growth of optimal streaks is studied for the Falkner-Skan boundary layer. For the algebraic growth, the optimal initial location, where the optimal disturbance is introduced in the boundary layer, is found to move downstream with decreased pressure gradient. A unified transition prediction method incorporating the influences of pressure gradient and free-stream turbulence is suggested. The algebraic growth of streaks in boundary layers subjected to wall suction is calculated. It is found that the spatial analysis gives larger optimal growth than temporal theory. Furthermore, it is found that the optimal growth is larger if the suction begins a distance downstream of the leading edge. Thresholds for transition of periodic and localized disturbances as well as the spreading of turbulent spots in the asymptotic suction boundary layer are investigated for Reynolds number Re=500, 800 and 1200 based on the displacement thickness and the free-stream velocity. It is found that the threshold amplitude scales like Re^-1.05 for transition initiated by streamwise vortices and random noise, like Re^-1.3 for oblique transition and like Re^-1.5 for the localized disturbance. The turbulent spot is found to take a bullet-shaped form that becomes more distinct and increases its spreading rate for higher Reynolds number. The Blasius wall jet is matched to the measured flow in an experimental wall-jet facility. Both the linear and nonlinear regime of introduced waves and streaks are investigated and compared to measurements. It is demonstrated that the streaks play an important role in the breakdown process where they suppress pairing and enhance breakdown to turbulence. Furthermore, statistics from the early turbulent regime are analyzed and reveal a reasonable self-similar behavior, which is most pronounced with inner scaling in the near-wall region. / QC 20101025
|
30 |
Submergence effects on jet behavior in scour by a plane wall jetGautam, Bishnu Prasad 01 April 2008
In this study, the effects of submergence on local scour in a uniform cohesionless sediment bed by a plane turbulent wall jet and the resulting flow field were investigated experimentally. Here, submergence is defined as the ratio of the tailwater depth to the thickness of the jet at its origin. The main focus was to determine scour dimensions at an asymptotic state, examine whether there was similarity in the velocity profiles for the flow in the scour hole, and to determine the growth of the length scales and decay of the maximum velocity of the jet. Also examined were the relationships between the scales for the velocity field in the scour hole and the scour hole size.<p>In the experiments, the range of submergence was varied from 3-17.5, whereas the range of densimetric Froude number and the ratio of the boundary roughness to the gate opening (relative boundary roughness) were varied from 4.4-6.9 and 0.085-0.137 respectively. The velocity field in the scour hole at asymptotic state was measured using a SonTek 16-MHz MicroADV. Time development of the characteristic dimensions of the scour hole was also measured.<p>The dimensions of the scour hole were found to increase with increasing submergence for all experiments with a bed-jet flow regime. In the bed-jet flow regime, the jet remains near the bed throughout the scouring process. Further, the time development of the scour hole dimensions were observed to increase approximately linearly with the logarithm of time up to a certain time before the beginning of asymptotic state for experiments with either the bed-jet or surface-jet flow regimes.<p> The flow field results showed that the velocity profiles in the region of forward flow and the recirculating region above the jet were similar in shape up to about the location of the maximum scour depth. Relationships describing this velocity profile, including its velocity and length scales, were formulated. The decay rate of the maximum velocity, the growth of the jet half-width, and the boundary layer thickness were also studied. The decay and the growth rate of the jet length scales were found to be influenced by the submergence ratio, densimetric Froude number, and the relative boundary roughness.<p>Two distinct stages in the decay of the maximum streamwise velocity, with distance along the direction of flow, were observed for the jet flows having a bed-jet flow regime. The first stage of velocity decay was characterized by a curvilinear decay of velocity, which followed that of a wall jet on a smooth, rigid bed for streamwise distance approximately equal to 2L. For the surface-jet flow regime, the decay of velocity was observed to be similar to that of a free-jump on a smooth, rigid bed for a streamwise distance approximately equal to L. Here, L is defined as the streamwise distance measured from the end of the rigid apron to where the maximum streamwise velocity in the jet is half the velocity of the jet at the end of apron. The streamwise maximum velocity of the jet was then seen to increase in what was called the recovery zone.<p>A relationship for the streamwise decay of the maximum velocity within the scour hole is proposed. Moreover, other scales representing the flow inside the scour hole such as the streamwise distance from the end of the apron to where the streamwise maximum velocity starts to deviate from curvilinear to linear decay and the streamwise distance to where maximum streamwise velocity starts to increase are suggested. Some new results on the velocity distribution for the reverse flow for a bed-jet flow regime are also presented. Finally, some dimensionless empirical equations describing the relationship between the jet scales for the jet flow in a scour hole and the scour hole size are given.
|
Page generated in 0.0249 seconds