• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 12
  • 12
  • 8
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combined gravity and lateral loading of light gauge steel framewood panel shear walls

Hikita, Katherine. January 2006 (has links)
Methods for the design of steel frame/wood panel shear walls used as a seismic force resisting system have been developed. These methods, which can be used in conjunction with the 2005 NBCC, were based on the results of shear wall tests carried out using lateral loads alone. The research program was extended to determine the influence of gravity loads on the lateral performance of the shear wall. An initial series of stud column tests was completed to determine an appropriate predication method for the axial capacity of the principal vertical load carrying members. Recommendations for appropriate effective length factors and buckling lengths were derived from the results of 40 tests. A subsequent series of five single-storey shear wall configurations were designed using capacity based methods. These shear walls were tested under monotonic and cyclic lateral loading, where two of three shear walls were also subjected to a constant gravity load. In total, 32 steel frame/wood panel shear walls composed of 1.09--1.37 mm thick steel studs sheathed with DFP, CSP or OSB panels were tested and analyzed. The equivalent energy elastic-plastic analysis approach was used to determine design values for stiffness, strength, ductility and overstrength. The data from this most recent series of tests indicates that the additional gravity loads do not have a detrimental influence on the lateral behaviour of a steel frame/wood panel shear wall if the chord studs are designed to carry the combined lateral and gravity forces following a capacity based approach. A resistance factor of 0.7 was found to be in agreement with previous tests that did not include gravity loads. The calculated seismic force modification factors also agreed with the previous test results, which suggest that Rd = 2.5 and Ro = 1.7.
2

The ultimate strength of load-bearing brick and block masonry walls /

Ojinaga, José I. January 1976 (has links)
No description available.
3

Unreinforced brick masonry walls under vertical loads.

Burns, Peter Daniel. January 1972 (has links)
No description available.
4

Unreinforced brick masonry walls under vertical loads.

Burns, Peter Daniel. January 1972 (has links)
No description available.
5

Combined gravity and lateral loading of light gauge steel framewood panel shear walls

Hikita, Katherine. January 2006 (has links)
No description available.
6

The ultimate strength of load-bearing brick and block masonry walls /

Ojinaga, José I. January 1976 (has links)
No description available.
7

Strength and ductility of high-strength concrete shear walls under reversed cyclic loading

Dabbagh, Hooshang, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2005 (has links)
This study concerns the strength and behaviour of low-rise shear walls made from high-strength concrete under reversed cyclic loading. The response of such walls is often strongly governed by the shear effects leading to the shear induced or brittle failure. The brittle nature of high-strength concrete poses further difficulties in obtaining ductile response from shear walls. An experimental program consisting of six high-strength concrete shear walls was carried out. Specimens were tested under inplane axial load and reversed cyclic displacements with the test parameters investigated being longitudinal reinforcement ratio, transverse reinforcement ratio and axial load. Lateral loads, lateral displacements and the strains of reinforcement in edge elements and web wall were measured. The test results showed the presence of axial load has a significant effect on the strength and ductility of the shear walls. The axially loaded wall specimens exhibited a brittle behaviour regardless of reinforcement ratio whereas the specimen with no axial load had a lower strength but higher ductility. It was also found that an increase in the longitudinal reinforcement ratio gave an increase in the failure load while an increase in the transverse reinforcement ratio had no significant effect on the strength but influenced the failure mode. A non-linear finite element program based on the crack membrane model and using smeared-fixed crack approach was developed with a new aggregate interlock model incorporated into the finite element procedure. The finite element model was corroborated by experimental results of shear panels and walls. The finite element analysis of shear wall specimens indicated that while strengths can be predicted reasonably, the stiffness of edge elements has a significant effect on the deformational results for two-dimensional analyses. Therefore, to capture the deformation of walls accurately, three-dimensional finite element analyses are required. The shear wall design provisions given in the current Australian Standard and the Building Code of American Concrete Institute were compared with the experimental results. The comparison showed that the calculated strengths based on the codes are considerably conservative, specially when there exists the axial load.
8

Strength and ductility of high-strength concrete shear walls under reversed cyclic loading

Dabbagh, Hooshang, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2005 (has links)
This study concerns the strength and behaviour of low-rise shear walls made from high-strength concrete under reversed cyclic loading. The response of such walls is often strongly governed by the shear effects leading to the shear induced or brittle failure. The brittle nature of high-strength concrete poses further difficulties in obtaining ductile response from shear walls. An experimental program consisting of six high-strength concrete shear walls was carried out. Specimens were tested under inplane axial load and reversed cyclic displacements with the test parameters investigated being longitudinal reinforcement ratio, transverse reinforcement ratio and axial load. Lateral loads, lateral displacements and the strains of reinforcement in edge elements and web wall were measured. The test results showed the presence of axial load has a significant effect on the strength and ductility of the shear walls. The axially loaded wall specimens exhibited a brittle behaviour regardless of reinforcement ratio whereas the specimen with no axial load had a lower strength but higher ductility. It was also found that an increase in the longitudinal reinforcement ratio gave an increase in the failure load while an increase in the transverse reinforcement ratio had no significant effect on the strength but influenced the failure mode. A non-linear finite element program based on the crack membrane model and using smeared-fixed crack approach was developed with a new aggregate interlock model incorporated into the finite element procedure. The finite element model was corroborated by experimental results of shear panels and walls. The finite element analysis of shear wall specimens indicated that while strengths can be predicted reasonably, the stiffness of edge elements has a significant effect on the deformational results for two-dimensional analyses. Therefore, to capture the deformation of walls accurately, three-dimensional finite element analyses are required. The shear wall design provisions given in the current Australian Standard and the Building Code of American Concrete Institute were compared with the experimental results. The comparison showed that the calculated strengths based on the codes are considerably conservative, specially when there exists the axial load.
9

Strength and ductility of high-strength concrete shear walls under reversed cyclic loading

Dabbagh, Hooshang, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2005 (has links)
This study concerns the strength and behaviour of low-rise shear walls made from high-strength concrete under reversed cyclic loading. The response of such walls is often strongly governed by the shear effects leading to the shear induced or brittle failure. The brittle nature of high-strength concrete poses further difficulties in obtaining ductile response from shear walls. An experimental program consisting of six high-strength concrete shear walls was carried out. Specimens were tested under inplane axial load and reversed cyclic displacements with the test parameters investigated being longitudinal reinforcement ratio, transverse reinforcement ratio and axial load. Lateral loads, lateral displacements and the strains of reinforcement in edge elements and web wall were measured. The test results showed the presence of axial load has a significant effect on the strength and ductility of the shear walls. The axially loaded wall specimens exhibited a brittle behaviour regardless of reinforcement ratio whereas the specimen with no axial load had a lower strength but higher ductility. It was also found that an increase in the longitudinal reinforcement ratio gave an increase in the failure load while an increase in the transverse reinforcement ratio had no significant effect on the strength but influenced the failure mode. A non-linear finite element program based on the crack membrane model and using smeared-fixed crack approach was developed with a new aggregate interlock model incorporated into the finite element procedure. The finite element model was corroborated by experimental results of shear panels and walls. The finite element analysis of shear wall specimens indicated that while strengths can be predicted reasonably, the stiffness of edge elements has a significant effect on the deformational results for two-dimensional analyses. Therefore, to capture the deformation of walls accurately, three-dimensional finite element analyses are required. The shear wall design provisions given in the current Australian Standard and the Building Code of American Concrete Institute were compared with the experimental results. The comparison showed that the calculated strengths based on the codes are considerably conservative, specially when there exists the axial load.
10

Seismic performance of reinforced concrete wall structures under high axial load with particular application to low-to moderate seismicregions

Wong, Sze-man., 黃思敏. January 2005 (has links)
The Best Master's Thesis Award of the Hong Kong Section, American Society of Civil Engineers (2005-06) / published_or_final_version / abstract / Civil Engineering / Master / Master of Philosophy

Page generated in 0.0841 seconds