Spelling suggestions: "subject:"walls."" "subject:"calls.""
251 |
Seismic Analysis of and Provisions for Dry-Stack Concrete Masonry Wall Systems with Surface Bond in Low-Rise BuildingsEixenberger, Joseph G. 01 April 2017 (has links)
Masonry is one of the oldest forms of construction materials that is still in use today. However, construction practices in the modern age demand faster and more economical practices. Dry-stack masonry, or masonry that doesn't use mortar to bind the blocks together, is a unique system to make masonry more economical. Though several systems of dry-stack masonry have been suggested little to no data exists as most of these systems are patented. This research used dry-stacked normal weight concrete masonry units with an eccentrically placed reinforcement. The wall system is connected through a surface bond and lacks any geometric connection. Previously, research has been conducted on the wall system for its axial compressive capacity, but little information is known about its ability to withstand lateral forces such as earthquakes. Research was conducted on the wall system in order to determine the seismic parameters, including the force reduction factor, overstrength factor, and the displacement amplification factor. To determine these factors the guidelines from the Federal Emergency Management Agency (FEMA) Quantification of Building Seismic Performance Factors 2009 were followed. The guidelines are explicit that both experimental data and computer modeling are needed to quantify these parameters. Experimental data was obtained from a diagonal tension test, and an in-plane shear test. The diagonal tensions test provided preliminary values on the shear modulus and shear resistance. The in-plane shear test was of primary interest and what would be used to verify the computer model. Computer modeling of the wall system was accomplished with Vector 2. Initially the computer modeling was done to reproduce experimental data. Then, a parametric study was performed using the model to see what component of the wall most effected its capacity. This analysis showed that the surface bond was the component of the wall that most affects its capacity. Finally, the computer model was run through the FEMA Far-Field earthquake suite to gather data on the strength and ductility. Values of the force reduction factor, overstrength factor, and displacement amplification factor were determined based on the time history analysis and pushover analysis on the computer model.
|
252 |
N-chain glucose processing and proper -1,3-glucan biosynthesis are required for normal cell wall -1,6-glucan levels in Saccharomyces cerevisiaeDijkgraaf, Gerrit J. P. January 2001 (has links)
No description available.
|
253 |
Comprehensive phenotype analysis and characterization of molecular markers of the poles of Saccharomyces cerevisiaePage, Nicolas. January 2001 (has links)
No description available.
|
254 |
Quantitative criteria for the selection and stabilisation of soils for rammed earth wall constructionBurroughs, Van Stephan, School of the Built Environment, UNSW January 2001 (has links)
Modern building procedures and requirements demand that the selection and stabilisation of soils for the purposes of rammed earth construction be better quantified. This study examines the relationships between soil properties, stabiliser treatments, and stabilised strength and density for 111 soil samples taken from sites in New South Wales (Australia), and develops new quantitative criteria for soil assessment, selection, and stabilisation. Laboratory measurements of soil particle size distribution, plasticity, and shrinkage were made for each soil. Various quantities from 0-6 % of lime, cement, and asphalt were added to the soil samples, and the resulting 230 specimens were compacted, and cured for 28 days. Determinations were made of the optimum moisture content, maximum dry density, and compressive strength of the stabilised material. The samples showed stabilised strengths ranging from 1.0-5.4 MPa, with a mean of 2.62 MPa, and densities from 1.44-2.21 t/m3, with a mean of 1.86 t/m3. The results show that over 90 % of the variation in stabilised strength and density of the samples is due to variation in soil properties, with differences in stabiliser type or stabiliser quantity being relatively minor. The most important soil properties explaining stabilised strength are linear shrinkage and plasticity index. These properties have been used to categorise the soils into three groups on the basis of their suitability for stabilisation as measured against a compressive strength criterion of 2 MPa. Favourable soils have shrinkages of < 7.1 % and plasticities of < 16 %, and 90 % of these samples passed the 2 MPa criterion. Satisfactory soils have shrinkages of 7.1-13.0 % and plasticities of 16-30 %, and 65 % of these samples had strengths in excess of 2 MPa. Unfavourable soils have shrinkages of > 13 % and plasticities of > 30 %, and only 10 % of these samples exceeded the 2 MPa value. Soils in the favourable and satisfactory categories can be further discriminated using textural information. On that basis, all soils classified as favourable, and those classified as satisfactory and which also have sand contents < 60 %, are recommended as being suitable for stabilisation. Soils not fulfilling these criteria are unlikely to be successfully stabilised and should be rejected. These results stress the importance of selecting a soil favourably predisposed to stabilisation. Field techniques to search for such soils could be refined on the basis of the new soil criteria presented. Use of the criteria should also minimise unnecessary laboratory testing of the density and strength of soils that subsequently prove unsuitable for stabilisation. A flow chart is presented to guide practitioners through the different stages of soil testing, assessment, and rammed earth stabilisation.
|
255 |
Lateral strength of zero bond masonry walls subjected to wind loadsSchulze, Peter, peter.schulze@deakin.edu.au January 1978 (has links)
Masonry walls are usually laid with the individual masonry units along a course overlapping units in the course below. Commonly, the perpend joints in the course occur above the mid-points of the units below to form a half-bond or above a third point to form a third-bond. The amount of this overlap has a profound influence on the strength of a wall supported on three or four sides, where lateral pressures from wind cause combined vertical and horizontal flexure.
Where masonry units are laid with mortar joints, the torsional shear bond resistance between the mortar and overlapping units largely determines the horizontal flexural strength. If there is zero bond strength between units, then the horizontal flexural strength is derived from the frictional resistance to torsion on the overlapping bed-faces of the units.
This thesis reports a theoretical and experimental investigation into the frictional properties of overlapping units when subjected to combinations of vertical and horizontal moments and vertical axial compression.
These basic properties were used to develop a theory to predict the lateral strength of walls supported on two, three or four sides. A plastic theory of behaviour was confirmed by experiment.
The theory was then used to determine maximum unbraced panel sizes for particular boundary conditions. Design charts were developed to determine temporary bracing requirements for panels during construction.
|
256 |
Framtagande av metoder och rutiner för säkerställande av kompetens : inom miljö, arbetsmiljö och kvalitetGustafsson, Ewa January 2004 (has links)
No description available.
|
257 |
Load sharing and system factors for light-frame wall systemsYu, Guangren 17 January 2003 (has links)
A considerable amount of research has focused on load-sharing and system
effects in repetitive-member wood floor systems subject to transverse loading.
However, relatively few studies have been conducted to investigate load-sharing
and system effects in repetitive-member wall systems which may be subject to
combined transverse and gravity (vertical) loading, and which may have different
boundary conditions from floors. This research investigates load-sharing and
system effects in light-frame wood wall systems and seeks to develop repetitive-member
system factors for codified design that rationally account for load sharing
and other system effects. These factors are intended for use in the design of
individual wall members, much as repetitive-member factors are used in the design
of parallel-member floor and roof systems. As part of this research, an analytical
model was developed to account for partial composite action, two-way action, and
openings in the wall system. The model was validated using experimental test
results and was shown to be able to predict reasonably well the response of light-frame
wall systems. The model was then incorporated into a Monte Carlo
simulation to perform reliability analyses of light-frame wall systems. Since the
structural model is complex, and including a time-history analysis within the time-dependent
simulation was not computationally practical, the load combination issue
was considered separately from the reliability analysis. Sensitivity studies were
conducted to investigate how different system parameters affect strength and
reliability of light-frame wall systems. The reliability of light-frame wall systems
was next evaluated using a portfolio of representative light-frame wall systems
designed according to current code provisions. This portfolio approach was also
used in evaluating system factors for light-frame wall systems. Thus, two different
approaches (a reliability-based approach and a strength-ratio approach) were
considered for developing system factors for member-design to account for load
sharing, partial composite action and other system effects. Using the strength-ratio
approach, a new framework for system factors (i.e., partial system factors) is
suggested in which the effects of partial composite action, load sharing, load
redistribution and system size (number of members) are treated separately. / Graduation date: 2003
|
258 |
Seismic Response Of Geosynthetic Reinforced Soil Wall Models Using Shaking Table TestsAdapa, Murali Krishna 02 1900 (has links)
Use of soil retaining walls for roads, embankments and bridges is increasing with time and reinforced soil retaining walls are found to be very efficient even under critical conditions compared to unreinforced walls. They offer competitive solutions to earth retaining problems associated with less space and more loads posed by tremendous growth in infrastructure, in addition to the advantages in ease and cost of construction compared to conventional retaining wall systems. The study of seismic performance of reinforced soil retaining walls is receiving much attention in the light of lessons learned from past failures of conventional retaining walls. Laboratory model studies on these walls under controlled seismic loading conditions help to understand better how these walls actually behave during earthquakes.
The objective of the present study is to investigate the seismic response of geosynthetic reinforced soil wall models through shaking table tests. To achieve this, wrap faced and rigid faced reinforced soil retaining walls of size 750 × 500 mm in plan and 600 mm height are built in rigid and flexible containers and tested under controlled dynamic conditions using a uni-axial shaking table. The effects of frequency and acceleration of the base motion, surcharge pressure on the crest, number of reinforcing layers, container boundary, wall structure and reinforcement layout on the seismic performance of the retaining walls are studied through systematic series of shaking table tests. Results are analyzed to understand the effect of each of the considered parameters on the face displacements, acceleration amplifications and soil pressures on facing at different elevations of the walls.
A numerical model is developed to simulate the shaking table tests on wrap faced reinforced soil walls using a computer program FLAC (Fast Lagrangian
Analysis of Continua). The experimental data are used to validate the numerical model and parametric studies are carried out on 6 m height full-scale wall using this model. Thus, the study deals with the shaking table tests, dynamic response of reinforced walls and their numerical simulation.
The thesis presents detailed description of various features and various parts of the shaking table facility along with the instrumentation and model containers. Methodology adopted for the construction of reinforced soil model walls and testing procedures are briefly described. Scaling and stability issues related to the model wall size and reinforcement strength are also discussed.
From the study, it is observed that the displacements are decreasing with the increase in relative density of backfill, increase in surcharge pressure and increase in number of reinforcing layers; In general, accelerations are amplified to the most at the top of the wall; Behaviour of model walls is sensitive to model container boundary. The frequency content is very important parameter affecting the model response. Further, it is noticed that the face displacements are significantly affected by all of the above parameters, while the accelerations are less sensitive to reinforcement parameters. Even very low strength geonet and geotextile are able to reduce the displacements by 75% compared to unreinforced wall. The strain levels in the reinforcing elements are observed to be very low, in the order of ±150 micro strains. A random dynamic event is also used in one of the model tests and the resulted accelerations and displacements are presented. Numerical parametric studies provided important insight into the behaviour of wrap faced walls under various seismic loading conditions and variation in physical parameters.
|
259 |
Response And Reliability Analyses Of Soil Nail WallsSingh, Vikas Pratap 07 1900 (has links)
In the present thesis, studies on the response of soil nail walls subjected to static and seismic conditions using finite element based numerical simulations and the principle of reliability analysis have been performed. The basic methodology constitutes the study of various aspects of soil nail walls such as analyses of important external, internal and facing failure modes, development of axial forces, and displacement observations by considering various typical and prototype cases. For better understanding and presentation, subject matter of the thesis is organised in the following ten chapters.
Chapter 1 of the thesis provides an introduction to the soil nailing technique and highlights some of its applications, advantages, and limitations.
Chapter 2 provides a detailed review of existing literature on the soil nailing technique.
Chapter 3 provides a detailed overview the various methodologies adopted in the thesis for the analyses and response study of the soil nail walls.
Chapter 4 deals with the important aspects related to the plane strain finite element based numerical simulations of soil nail walls. In particular, addresses the implications of the use of advanced soil models and the consideration of bending stiffness of soil nails on the overall response of the soil nail walls.
Chapter 5 presents finite element simulations based appraisal of the conventional design methodology of soil nail walls, and studies the response of typical soil nail walls under static and seismic conditions.
Chapter 6 presents a reliability based study of the important failure modes of soil nail walls subjected to the variability in in-situ soil parameters, and highlights the importance of reliability analysis in context of soil nail walls.
Chapter 7 proposes load and resistance factor design (LRFD) methodology in context of soil nail walls, and highlights the need in advancement of the existing conventional design methodology for soil nail walls.
Chapter 8 illustrates the use of factorial design of experiment methodology in developing regression models for stability criteria analysis of soil nail walls.
Chapter 9 proposes methods for assessing the adequacy of field pullout tests performed in accordance with the prevalent soil nailing guidelines. Further, a reliability based methodology is proposed for the evaluation and various applications of field pullout tests results have been illustrated.
Chapter 10 summarises the various studies reported in the thesis and provides a few important conclusions.
It is believed that the various studies reported in the thesis contribute to the enhancement of the existing knowledge on soil nailing technique, advancement in the analysis and design methods, and in general, are useful to the soil nailing practice.
|
260 |
Framtagande av metoder och rutiner för säkerställande av kompetens : inom miljö, arbetsmiljö och kvalitetGustafsson, Ewa January 2004 (has links)
No description available.
|
Page generated in 0.0242 seconds