• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inflação estocástica não-isentrópica / Nonisentropic stochastic inflation

Leandro Alexandre da Silva 18 March 2013 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Em modelos inflacionários não-isentrópicos, a contribuição para o espectro de potência é essencialmente proveniente das flutuações térmicas. Esta é a situação oposta a da inflação fria, onde as flutuações de origem quântica fornecem toda contribuição para o espectro. Pouca ou nenhuma importância tem sido dada ao regime intermediário, onde as flutuações quânticas e térmicas são comparáveis. Neste trabalho, tendo como bases a inflação não-isentrópica e a inflação estocástica de Starobinsky, propomos um quadro geral onde é possível tratar de maneira conjunta, explícita e transparente tanto a contribuição de origem quântica quanto a de origem térmica para o espectro de potência do inflaton.O espectro de potência geral obtido reproduz, nos limites apropriados, todos os resultados caracteríssticos tanto da inflação fria, quanto da inflação não-isentrópica. Com o objetivo de checar a consistência e a viabilidade do modelo, foram usados os típicos potenciais polinomiais característicos da inflação caótica. Apesar destes potenciais já estarem praticamente descartados pelas observações no contexto da inflação fria, surpreendentemente pudemos constatar que efeitos dissipativos e de temperatura são capazes de restaurar a compatibilidade dos mesmos com os parâmetros cosmológicos inferidos através dos dados do nono ano do WMAP. Através da inserção de tais efeitos na dinâmica de grandes escalas do inflaton, estendemos ainda alguns resultados relacionados ao cenário conhecido como inflação eterna. / In nonisentropic inflationary models, the contribution to the power spectrum is essentially derived from thermal fluctuations. This is the opposite situation than the cold inflation, where the quantum fluctuations provide the total contribution to the spectrum.Little or no importance has been given to the intermediate case, where quantum and thermal contributions are comparable. In this work, relying on nonisentropic inflation and Starobinsky's stochastic inflation program, we propose a general framework that aims to describe explicitly and in a transparent way both quantum and thermal contributions to the inflaton power spectrum. The result for the power spectrum reproduces, when we take appropriate limits, the standard expressions of cold and nonisentropic inflation. In order to check model consistence and its viability, we made use of typical single field polynomial-type inflaton potential. Despite this kind of potential be strongly disfavored by observations in the cold inflation context, we surprisingly found that dissipative and temperature effects are able to restore their compatibility with cosmological parameters inferred from 9-year WMAP data. Farther, by inserting such effects on the large scale dynamics of inflaton field, we extend some results related to the eternal inflation scenario.
2

Inflação estocástica não-isentrópica / Nonisentropic stochastic inflation

Leandro Alexandre da Silva 18 March 2013 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Em modelos inflacionários não-isentrópicos, a contribuição para o espectro de potência é essencialmente proveniente das flutuações térmicas. Esta é a situação oposta a da inflação fria, onde as flutuações de origem quântica fornecem toda contribuição para o espectro. Pouca ou nenhuma importância tem sido dada ao regime intermediário, onde as flutuações quânticas e térmicas são comparáveis. Neste trabalho, tendo como bases a inflação não-isentrópica e a inflação estocástica de Starobinsky, propomos um quadro geral onde é possível tratar de maneira conjunta, explícita e transparente tanto a contribuição de origem quântica quanto a de origem térmica para o espectro de potência do inflaton.O espectro de potência geral obtido reproduz, nos limites apropriados, todos os resultados caracteríssticos tanto da inflação fria, quanto da inflação não-isentrópica. Com o objetivo de checar a consistência e a viabilidade do modelo, foram usados os típicos potenciais polinomiais característicos da inflação caótica. Apesar destes potenciais já estarem praticamente descartados pelas observações no contexto da inflação fria, surpreendentemente pudemos constatar que efeitos dissipativos e de temperatura são capazes de restaurar a compatibilidade dos mesmos com os parâmetros cosmológicos inferidos através dos dados do nono ano do WMAP. Através da inserção de tais efeitos na dinâmica de grandes escalas do inflaton, estendemos ainda alguns resultados relacionados ao cenário conhecido como inflação eterna. / In nonisentropic inflationary models, the contribution to the power spectrum is essentially derived from thermal fluctuations. This is the opposite situation than the cold inflation, where the quantum fluctuations provide the total contribution to the spectrum.Little or no importance has been given to the intermediate case, where quantum and thermal contributions are comparable. In this work, relying on nonisentropic inflation and Starobinsky's stochastic inflation program, we propose a general framework that aims to describe explicitly and in a transparent way both quantum and thermal contributions to the inflaton power spectrum. The result for the power spectrum reproduces, when we take appropriate limits, the standard expressions of cold and nonisentropic inflation. In order to check model consistence and its viability, we made use of typical single field polynomial-type inflaton potential. Despite this kind of potential be strongly disfavored by observations in the cold inflation context, we surprisingly found that dissipative and temperature effects are able to restore their compatibility with cosmological parameters inferred from 9-year WMAP data. Farther, by inserting such effects on the large scale dynamics of inflaton field, we extend some results related to the eternal inflation scenario.
3

Processos estocásticos em teoria de campos e aplicação ao universo inflacionário / Stochastic processes in field theory and application to the inflationary universe

Leandro Alexandre da Silva 12 March 2009 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / É conhecido que derivações microscópicas obtidas através de métodos de teoria quântica de campos (TQC) podem conduzir a complicadas equações de movimento (EdM) que possuem um termo dissipativo com memória e um termo de ruído colorido. Um caso particularmente interessante é o modelo que escreve a interação entre um sistema e um banho térmico a temperatura T. Motivado por isso, usamos uma prescrição que nos permite reescrever EdMs não-markovianas semelhantes as obtidas em TQC em termos de um sistema de equações locais, para então confrontarmos a solução desse sistema com a solução aproximada usada correntemente na literatura, a chamada aproximação markoviana. A pergunta chave a qual se pretende responder aqui é: dado um conjunto de parâmetros que descrevem o modelo, a aproximação markoviana é suficientemente boa para descrever a dinâmica do sistema se comparada a dinâmica obtida atravéS da EdM não-markoviana? Além disso, consideramos uma versão linear da ELG de forma que pudéssemos determinar o nível de confiança da nossa metodologia numérica, procedimento este realizado comparando-se a solução analítica com a solução numérica. Como exemplo de aplicação prática do tema discutido aqui, comparamos a evolução não-markoviana do inflaton com a evolução markoviana do mesmo num modelo de universo primordial denominado inflação não-isentrópica (warm inflation). / It is known that microscopic derivations based on quantum field theory (QFT)methods can lead to quite complicated equations of motion (EoM) with a dissipation term with memory and a colored noise term. A very interesting particular case is the model that describes the interaction between a system and a thermal bath at some temperature T. Motivated by this, we use a prescription that allow us to rewrite similar non-Markovian EoMs to that obtained in QFT in terms of a set of local equations, so that we can contrast the solution of this system of equations with the approximated solution currently used in the literatury, the so-called Markovian approximation. The key question we want to address here is: given a set of parameters that characterizes the system and the bath, is the Markovian approximation good enough to represent the system's dynamics? We also have considered a linear version of the non-Markovian equation in order to check the confiability of our numerical approach. For that, we have compared the analytical solution with the numerical one. As an example of practical application of the theme discussed here, we contrast the non-Markovian and the Markovian evolution of the inflaton field in an early universe model called warm in inflation.
4

Processos estocásticos em teoria de campos e aplicação ao universo inflacionário / Stochastic processes in field theory and application to the inflationary universe

Leandro Alexandre da Silva 12 March 2009 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / É conhecido que derivações microscópicas obtidas através de métodos de teoria quântica de campos (TQC) podem conduzir a complicadas equações de movimento (EdM) que possuem um termo dissipativo com memória e um termo de ruído colorido. Um caso particularmente interessante é o modelo que escreve a interação entre um sistema e um banho térmico a temperatura T. Motivado por isso, usamos uma prescrição que nos permite reescrever EdMs não-markovianas semelhantes as obtidas em TQC em termos de um sistema de equações locais, para então confrontarmos a solução desse sistema com a solução aproximada usada correntemente na literatura, a chamada aproximação markoviana. A pergunta chave a qual se pretende responder aqui é: dado um conjunto de parâmetros que descrevem o modelo, a aproximação markoviana é suficientemente boa para descrever a dinâmica do sistema se comparada a dinâmica obtida atravéS da EdM não-markoviana? Além disso, consideramos uma versão linear da ELG de forma que pudéssemos determinar o nível de confiança da nossa metodologia numérica, procedimento este realizado comparando-se a solução analítica com a solução numérica. Como exemplo de aplicação prática do tema discutido aqui, comparamos a evolução não-markoviana do inflaton com a evolução markoviana do mesmo num modelo de universo primordial denominado inflação não-isentrópica (warm inflation). / It is known that microscopic derivations based on quantum field theory (QFT)methods can lead to quite complicated equations of motion (EoM) with a dissipation term with memory and a colored noise term. A very interesting particular case is the model that describes the interaction between a system and a thermal bath at some temperature T. Motivated by this, we use a prescription that allow us to rewrite similar non-Markovian EoMs to that obtained in QFT in terms of a set of local equations, so that we can contrast the solution of this system of equations with the approximated solution currently used in the literatury, the so-called Markovian approximation. The key question we want to address here is: given a set of parameters that characterizes the system and the bath, is the Markovian approximation good enough to represent the system's dynamics? We also have considered a linear version of the non-Markovian equation in order to check the confiability of our numerical approach. For that, we have compared the analytical solution with the numerical one. As an example of practical application of the theme discussed here, we contrast the non-Markovian and the Markovian evolution of the inflaton field in an early universe model called warm in inflation.

Page generated in 0.0986 seconds