• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coupling of belowground biogeochemical cycles and plant carbon allocation strategies highlight global patterns in resource limitation and ecosystem-level responses to global change

Gill, Allison Lorraine 08 November 2017 (has links)
Soils contain the largest terrestrial pool of carbon (C), but the magnitude and distribution of the soil C sink may be sensitive to climate change. My dissertation aims to identify key processes that mediate patterns of belowground carbon storage across the globe and quantify the effect of environmental perturbations associated with global change on existing soil carbon stocks in peatland ecosystems. Using meta-analysis, I show that the relationship between plant growth, C allocation, and soil nutrient availability varies on a global scale and high-latitude ecosystems allocate >60% of fixed C to belowground structures. As high latitude ecosystems are warming faster than the global mean, the future of this belowground C store is potentially sensitive to climate change. In high latitude ecosystems in particular, I further show that belowground warming increases the rate of peatland carbon dioxide (CO2) and methane (CH4) losses, although CH4 emissions are more sensitive to warming than CO2 emissions, which is likely to shift the nature of greenhouse gas emissions and increase the importance of CH4 as a radiative forcing agent in the near-term. I also use a natural peatland water table gradient to identify the effect of water table reduction on peatland C and N cycling and find that microbial community shifts in C and N demand may attenuate production of C-degrading enzymes and C mineralization in the presence of plant roots and in areas with low water tables. Together, my dissertation work highlights the important role of belowground plant and microbial processes in high latitude ecosystems, and identifies the potential influence of factors associated with global change on belowground C and nutrient cycling.
2

Effects of rising air and soil temperatures on the life cycle of important pathogens in oilseed rape (Brassica napus L.) in Lower Saxony

Siebold, Magdalena 15 November 2012 (has links)
No description available.

Page generated in 0.0794 seconds