• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation of the Gondwana coals

Sanders, G. J. January 1985 (has links)
No description available.
2

Characterizing Trace Element Associations in the Pittsburgh No. 8, Illinois No. 6 and Coalburg Coal Seams

Conaway, Shawn Michael 04 February 2002 (has links)
Coal preparation is widely regarded as a cost effective method for reducing the amounts of potentially hazardous air pollutant precursors (HAPPs) that occur as trace elements in the run-of-mine coals. Unfortunately, many existing coal preparation plants are inefficient in removing trace elements because of poor circuit design and inadequate liberation of coal and mineral matter. These problems are often difficult to correct in the absence of characterization data regarding the mineralogical association and washability of trace elements in run-of-mine coals. Therefore, the first step in removing the trace elements through coal preparation is to characterize the modes of association for trace elements in a coal seam. The purpose of this project was to link the occurrence of specific trace elements to the mineralogy and washability characteristics of different eastern U.S. coal seams. Detailed characterization studies were carried out using scanning electron microscopy (SEM) coupled with automated image analysis (AIA) to establish the association between different trace elements and the various components contained in coal. The first step in this analysis required the preparation of 11 different density fractions from a run-of-mine sample of 65 x 100 mesh Pittsburgh No. 8 coal. The samples were then examined using the scanning electron microscope (SEM) to establish the individual mineral constituents contained within each gravity fraction. For comparison, each gravity fraction was also carefully analyzed for trace element content by atomic adsorption spectroscopy (AA). The contribution of various mineral components to the trace element concentrations was determined in the present work using statistical procedures, i.e., individual linear regression and multiple linear regression. After completing the SEM analyses, washability (float-sink) tests were performed on three different coal seams. In this work, several size fractions from each of three different run-of-mine coals were subjected to float-sink testing and release analysis. Because of the overwhelming amount of data, statistical analyses were conducted to show the key relationships identified by this work. The data collected from this study show that trace elements are primarily associated with the mineral matter present in run-of-mine coal. The washability work also shows that the trace elements are concentrated in the heavier specific gravity classes. The characterization work shows that majority of the trace elements are associated with the ash-forming mineral matter and pyrite. The only element found to have a strong association with organic matter was beryllium. The information obtained from this work suggests that a properly designed coal preparation plant can remove substantial amounts of trace elements prior to coal combustion. / Master of Science
3

Wearable Systems in Harsh Environments : Realizing New Architectural Concepts

Chedid, Michel January 2010 (has links)
Wearable systems continue to gain new markets by addressing improved performance and lower size, weight and cost. Both civilian and military markets have incorporated wearable technologies to enhance and facilitate user's tasks and activities. A wearable system is a heterogeneous system composed of diverse electronic modules: data processing, input and output modules. The system is constructed to be body-borne and therefore, several constraints are put on wearable systems regarding wearability (size, weight, placement, etc.) and robustness rendering the task of designing wearable systems challenging. In this thesis, an overview of wearable systems was given by discussing definition, technology challenges, market analysis and design methodologies. Main research targeted at network architectures and robustness to environmental stresses and electromagnetic interference (EMI). The network architecture designated the data communication on the intermodule level - topology and infrastructure. A deeper analysis of wearable requirements on the network architecture was made and a new architecture is proposed based on DC power line communication network (DC-PLC). In addition, wired data communication was compared to wireless data communication by introducing statistical communication model and looking at multiple design attributes: power efficiency, scalability, and wearability. The included papers focused on wearable systems related issues including analysis of present situation, environmental and electrical robustness studies, theoretical and computer aided modelling, and experimental testing to demonstrate new wearable architectural concepts. A roadmap was given by examining the past and predicting the future of wearable systems in terms of technology, market, and architecture. However, the roadmap was updated within this thesis to include new market growth figures that proved to be far less than was predicted in 2004. User and application environmental requirements to be applied on future wearable systems were identified. A procedure is presented to address EMI and evaluated solutions in wearable application through modelling and simulation. Environmental robustness and wearability of wearable systems in general, and washability and conductive textile in particular are investigated. A measurement-based methodology to model electrical properties of conductive textile when subjected to washing was given. Employing a wired data communication network was found to be more appropriate for wearable systems than wireless networks when prioritizing power efficiency. The wearability and scalability of the wired networks was enhanced through conductive textile and DC-PLC, respectively. A basic wearable application was built to demonstrate the suitability of DC-PLC communication with conductive textile as infrastructure. The conductive textile based on metal filament showed better mechanical robustness than metal plated conductive textile. A more advanced wearable demonstrator, where DC-PLC network was implemented using transceivers, further strengthened the proposed wearable architecture. Based on the overview, the theoretical, modelling and experimental work, a possible approach of designing wearable systems that met several contradicting requirements was given.

Page generated in 0.1545 seconds