• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental manure handling systems for reducing airborne contamination

Stewart, Karen 05 January 2005
A laboratory was built at Prairie Swine Centre Inc. (PSCI) to study air quality in swine barns and its effect on pigs and people. The first focus of that research program was to design and test a manure handling system to control the air contamination from the excreta. The goal was to get close to zero air contamination from manure with these systems, in order to measure the contamination from other sources, and to also have a range of contamination levels for future health and productivity testing. Two manure handling systems were designed and tested: a washing gutter system with pressurized heated wash water periodically directed across the dunging area, and a washed inclined conveyor belt used directly as a dunging area. Ammonia emissions were used as a measure of the air contamination originating from the excreta in two experimental chambers. Ammonia originates only from the manure and is released quickly from any manure (especially urine) in contact with the air. Both systems were tested with 30 kg pigs at running time intervals of 30, 60 and 120 minutes. Trials lasted one week, with three trials completed at each frequency. The average ammonia emissions from the washing gutter and the conveyor belt systems were 48.7 mg day-1 kgpig-1 and 57.0 mg day-1 kgpig-1, respectively. Even though these emissions were 38% and 47% lower than previous observations from grower-finisher rooms with a pit plug design in the same swine building, both systems failed to give the desired close-to-zero contamination. This means another system will have to be found to totally eliminate air contamination from manure in the chambers when testing for the origin of the individual contaminants. There were no differences at a statistically significant level (P>0.05) between the ammonia emissions from the two manure handling systems or the three frequencies tested. However, the washing gutter system was simpler and easier to run, and is recommended for future studies dealing with the effects of different ranges of air quality on pigs and people.
2

Experimental manure handling systems for reducing airborne contamination

Stewart, Karen 05 January 2005 (has links)
A laboratory was built at Prairie Swine Centre Inc. (PSCI) to study air quality in swine barns and its effect on pigs and people. The first focus of that research program was to design and test a manure handling system to control the air contamination from the excreta. The goal was to get close to zero air contamination from manure with these systems, in order to measure the contamination from other sources, and to also have a range of contamination levels for future health and productivity testing. Two manure handling systems were designed and tested: a washing gutter system with pressurized heated wash water periodically directed across the dunging area, and a washed inclined conveyor belt used directly as a dunging area. Ammonia emissions were used as a measure of the air contamination originating from the excreta in two experimental chambers. Ammonia originates only from the manure and is released quickly from any manure (especially urine) in contact with the air. Both systems were tested with 30 kg pigs at running time intervals of 30, 60 and 120 minutes. Trials lasted one week, with three trials completed at each frequency. The average ammonia emissions from the washing gutter and the conveyor belt systems were 48.7 mg day-1 kgpig-1 and 57.0 mg day-1 kgpig-1, respectively. Even though these emissions were 38% and 47% lower than previous observations from grower-finisher rooms with a pit plug design in the same swine building, both systems failed to give the desired close-to-zero contamination. This means another system will have to be found to totally eliminate air contamination from manure in the chambers when testing for the origin of the individual contaminants. There were no differences at a statistically significant level (P>0.05) between the ammonia emissions from the two manure handling systems or the three frequencies tested. However, the washing gutter system was simpler and easier to run, and is recommended for future studies dealing with the effects of different ranges of air quality on pigs and people.

Page generated in 0.0722 seconds