• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Contribution à l'élaboration d'un procédé de valorisation des cendres volantes et des résidus d'épuration des fumées d'incinération d'ordures ménagères / Valorisation of municipal solid waste incineration fly ashes and air pollution control residues

De Boom, Aurore 04 November 2009 (has links)
D’après les limites d’acceptation pour la mise en décharge des déchets, les REFIOM (Résidus d’Epuration des Fumées d’Incinération d’Ordures Ménagères) sont considérés comme déchets dangereux, car ils libèrent des quantités importantes de chlorures et de métaux lourds lorsqu’ils entrent en contact avec de l’eau. Ces solides doivent par conséquent être traités avant leur mise en décharge. A côté des traitements visant l’acceptabilité des REFIOM en décharge, quelques recherches entrevoient la possibilité de valoriser ces résidus, notamment dans des matériaux cimentaires. <p>Les recherches présentées ici s’inscrivent dans cette tendance nouvelle et visent l’élaboration d’un procédé combinant traitement et valorisation des REFIOM. <p>Les REFIOM représentent en fait différents types de résidus provenant des installations que rencontrent les fumées issues de l’incinération des déchets. La composition des résidus diffère selon leur origine. Il est dès lors apparu essentiel de considérer chaque type de résidu séparément et de poursuivre l’élaboration d’un traitement sur un seul type de REFIOM. Nous avons choisi de concentrer les recherches sur les Cendres Volantes de Chaudière (CVC), ces résidus se retrouvant dans tout incinérateur. <p>Le traitement des CVC est basé sur l’extraction de fractions valorisables et la séparation de fractions contaminées, permettant d’obtenir des résidus acceptables en décharge ou, idéalement eux-mêmes valorisables. <p>Une séparation magnétique permet d’extraire environ 10% en poids des CVC mais ne semble pas exploitable dans le cadre du traitement des CVC car les particules magnétiques contiennent des impuretés (composés non magnétiques) et que le résidu final reste contaminé. <p>Une étude de la répartition des éléments en fonction de la taille des particules (granulochimie) est effectuée sur les CVC. Il apparaît intéressant de séparer la fraction inférieure à 38 µm obtenue lors d’une séparation granulométrique, effectuée en voie humide en utilisant une solution dense. En effet, cette fraction semble être nettement plus contaminée en Pb (soluble) que le reste des CVC. Une telle séparation constitue dès lors la première étape du traitement des CVC. Elle est suivie par des étapes de lavage des fractions obtenues, visant à extraire les sels solubles (chlorures et métaux). Les lavages sont envisagés à contre-courant afin d’utiliser au mieux l’eau de lavage. Une recirculation interne des solutions est également prévue, de sorte que, théoriquement, le procédé ne génère pas d’effluents liquides. Une étape de précipitation de composés métalliques (PbS dans ce cas-ci) est prévue après le lavage des boues. <p>Le procédé de traitement des CVC produirait ainsi des boues et des granulats décontaminés, des sels et des précipités métalliques. Seules certaines étapes du procédé ont été investiguées en laboratoire ;des essais supplémentaires sont encore nécessaires pour optimiser chaque étape, comprendre les phénomènes physico-chimiques qui se produisent et assurer des filières de valorisation. <p>/<p>Municipal Solid Waste Incineration (MSWI) fly ashes and Air Pollution Control (APC) residues are considered as hazardous waste according to the limits for the acceptance of waste at landfills, because high amounts of chlorides and heavy metals leach from the solids when those are in contact with water. These residues have thus to be treated before they can be accepted in landfill. Several treatments aim to limit the leaching of the residues. Beside these treatments, some research works go further the treatment and consider the valorisation of MSWI fly ashes and APC residues, e.a. in cementitious materials. <p>The present work follows the new trend and aims to build up a process that combines treatment and valorisation of MSWI fly ashes and APC residues. <p>MSWI fly ashes and APC residues come from the devices encountered by the flue gases from waste incineration. The residues composition differs according to their origin. It seems thus essential to consider each type of residues separately and to develop the treatment only on one sort of residue. Boiler Fly Ashes (BFA) were chosen because they exist in every modern MSWI plant. <p>The BFA treatment is based on the extraction of valorisable fractions and on the separation of contaminated fractions, which makes the final residues less hazardous; these final residues would then be acceptable in landfill, or, even better, be valorisable. <p>A magnetic sorting extracts ~10% (wt.) of BFA; however, such a separation would not be useful in a treatment process because the magnetic particles contain some impurities (non magnetic particles) and the final residue is still hazardous. <p>The repartition of the elements according to the particles size has been studied on BFA. It seems interesting to separate the BFA at 38 µm by a wet sieving process using a dense solution. The lower fraction presents a higher contamination in Pb (soluble) than the larger. Consequently, the first step of the BFA treatment consists of a wet sieving. Washing steps follow the sieving and aim to extract soluble salts (chlorides, heavy metals). These washings work in a counter-current way to optimise the use of water. The solutions are recycled in the process, which implies the absence of liquid effluents. A precipitation step of some metallic compounds (PbS in this case) is foreseen after the washing of the lower fraction. <p>The BFA treatment process would produce decontaminated sludge and coarse fractions, salts and metallic compounds. Some steps of the process have been investigated at lab-scale; further studies are necessary to optimise each step, to understand the observed reactions and to guarantee valorisation channels. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
22

Estimation of the emissions of gases from a two landfill sites using the LandGEM and Afvalzorg models: Case study of the Weltervenden (Polokwane) and Thohoyandou landfills

Njoku, Prince Obinna 21 September 2018 (has links)
MENVSC / Department of Ecology and Resource Management / Over the years it has been observed that the solid waste sector has been an increasingly major contributor to the amount of Greenhouse gases (GHGs) in the atmosphere. To some extent a great chunk of these GHGs in the atmosphere is from Landfill gas (LFG). This study employs two theoretical models (LandGEM and Afvalzorg models) to estimate the amount of LFG emitted from Weltervenden and Thohoyandou landfill sites located in Limpopo province of South Africa. Furthermore, the study investigated the appropriate technique of the LFG utilisation as a source of electricity and the number of households using electricity. LFGcost model was used to estimate the cost and benefits related to the implementation of a LFG utilisation technology. Also, the possible health and environmental impacts of the landfill emissions on the people living closer to the landfill site were determined. The LandGEM model’s simulation concludes that CH4 and CO2 peaked in the year 2020 with values of 3.323 × 103 Mg/year and 9.118 × 103 Mg/year, respectively, for the Thohoyandou landfill. Results from the Afvalzorg model indicate that the CH4 peaked in the year 2020 with value of 3.501 × 103 Mg/year. Meanwhile the total emission of CH4 from 2005-2040 by the LandGEM and Afvalzorg models are 66200 Mg/year and 69768 Mg/year, respectively. However, for the Weltervenden landfill, the total LFG peaked in the year 2023 while the CH4 peak at 4061 Mg/year and 3128 Mg/year for LandGEM and Afvalzorg models, respectively. Furthermore, results from the cost analysis and benefits for the implementation of a LFG utilisation technology in both landfills show that the implementation of such a utilisation technology will be economically feasible considering the sale of t CO2 equivalent in the carbon market. However, without considering the sales of t CO2 equivalent, not all the LFG engines are economically feasible for both landfills. This study also shows that the residents living closer to the Thohoyandou landfill are at a higher risk of environmental pollution and could suffer negative impacts from the landfill than residents living far from the landfill site. However, the Weltervenden landfill did not have lots of communities living closer to the landfill and therefore it was not included in this study. / NRF

Page generated in 0.0629 seconds