• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling the viability of heat recovery from underground pipes : deterministic modelling of wastewater temperatures in a 3000 sewer pipe network

Abdel-Aal, Mohamad January 2015 (has links)
Modelling wastewater temperature variations in a network of 3048 sewer pipes was achieved in this project. Recovering heat from sewers presents attractive options for producing clean energy. However, heat recovery from sewerage may result in wastewater temperature drops which may reduce the influent temperature at the wastewater treatment plant (WWTP). This drop in the WWTP influent temperature may result in the degradation of the biological treatment stage. Therefore, it is vital to predict the impact of recovering heat from sewers on the wastewater temperature. Sewer temperatures along with hydraulic data were measured for up to a year in four different Belgian sites. The measured data was utilised to calibrate a deterministic sewer pipe model that estimates the wastewater temperature variation along the sewer pipe profiles. The latter model was calibrated using data from two sites and then validated using independent data from the other two sites. The sewer pipe model was then further developed to model wastewater temperature variations in a large (3048 pipe) network. The large network model was tested by implementing three different heat recovery scenarios. It was observed that 9 MW may be recovered from the 3048 pipe network, serving a catchment with a population equivalent of 79500 inhabitants, without impacting negatively on the biological processes.
2

Modelling the potential for multi-location in-sewer heat recovery at a city scale under different seasonal scenarios

Mohamad, A-A., Schellart, A., Kroll, S., Mohamed, Mostafa H.A., Tait, S. 01 September 2018 (has links)
yes / A computational network heat transfer model was utilised to model the potential of heat energy recovery at multiple locations from a city scale combined sewer network. The uniqueness of this network model lies in its whole system validation and implementation for seasonal scenarios in a large sewer network. The network model was developed, on the basis of a previous single pipe heat transfer model, to make it suitable for application in large sewer networks and its performance was validated in this study by predicting the wastewater temperature variation in a sewer network. Since heat energy recovery in sewers may impact negatively on wastewater treatment processes, the viability of large scale heat recovery across a network was assessed by examining the distribution of the wastewater temperatures throughout the network and the wastewater temperature at the wastewater treatment plant inlet. The network heat transfer model was applied to a sewer network with around 3000 pipes and a population equivalent of 79500. Three scenarios; winter, spring and summer were modelled to reflect seasonal variations. The model was run on an hourly basis during dry weather. The modelling results indicated that potential heat energy recovery of around 116, 160 & 207 MWh/day may be obtained in January, March and May respectively, without causing wastewater temperature either in the network or at the inlet of the wastewater treatment plant to reach a level that was unacceptable to the water utility.
3

Modelling the Viability of Heat Recovery from Underground Pipes. Deterministic modelling of wastewater temperatures in a 3000 sewer pipe network

Abdel-Aal, Mohamad January 2015 (has links)
Modelling wastewater temperature variations in a network of 3048 sewer pipes was achieved in this project. Recovering heat from sewers presents attractive options for producing clean energy. However, heat recovery from sewerage may result in wastewater temperature drops which may reduce the influent temperature at the wastewater treatment plant (WWTP). This drop in the WWTP influent temperature may result in the degradation of the biological treatment stage. Therefore, it is vital to predict the impact of recovering heat from sewers on the wastewater temperature. Sewer temperatures along with hydraulic data were measured for up to a year in four different Belgian sites. The measured data was utilised to calibrate a deterministic sewer pipe model that estimates the wastewater temperature variation along the sewer pipe profiles. The latter model was calibrated using data from two sites and then validated using independent data from the other two sites. The sewer pipe model was then further developed to model wastewater temperature variations in a large (3048 pipe) network. The large network model was tested by implementing three different heat recovery scenarios. It was observed that 9 MW may be recovered from the 3048 pipe network, serving a catchment with a population equivalent of 79500 inhabitants, without impacting negatively on the biological processes. / INNERS project funded by EU Interreg IVB
4

Using long term simulations to understand heat transfer processes during steady flow conditions in combined sewers

Abdel-Aal, Mohamad, Tait, Simon, Mohamed, Mostafa H.A., Schellert, A. 21 March 2022 (has links)
Yes / This paper describes a new heat transfer parameterisation between wastewater and insewer air based on understanding the physical phenomena observed in free surface wastewater and in-sewer air. Long-term wastewater and in-sewer air temperature data were collected and studied to indicate the importance of considering the heat exchange with in-sewer air and the relevant seasonal changes. The new parameterisation was based on the physical flow condition variations. Accurate modelling of wastewater temperature in linked combined sewers is needed to assess the feasibility of in-sewer heat recovery. Historically, the heat transfer coefficient between wastewater and in-sewer air has been estimated using simple empirical relationships. The newly developed parameterisation was implemented and validated using independent long-term flow and temperature datasets. Predictive accuracy of wastewater temperatures was investigated using a Taylor diagram, where absolute errors and correlations between modelled and observed values were plotted for different site sizes and seasons. The newly developed coefficient improved wastewater temperature modelling accuracy, compared with the older empirical approaches, which resulted in predicting more potential for heat recovery from large sewer networks. For individual locations, the RMSE between observed and predicted temperatures ranged between 0.15 and 0.5 °C with an overall average of 0.27 °C. Previous studies showed higher RMSE ranges, e.g., between 0.12 and 7.8 °C, with overall averages of 0.35, 0.42 and 2 °C. The new coefficient has also provided stable values at various seasons and minimised the number of required model inputs.

Page generated in 0.2353 seconds