Spelling suggestions: "subject:"water"" "subject:"later""
621 |
A physical and chemical characterization of stream water draining three Oregon Coast Range catchments /Hale, V. Cody. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references. Also available on the World Wide Web.
|
622 |
Transformation and re-formation: First Nations and water in CanadaLittlechild, Danika Billie 24 December 2014 (has links)
First Nations in Canada face numerous challenges when it comes to water. First Nations experiences with water range from individual and family challenges, including limited or no access to safe drinking water, to broader collective concerns such as exercising aboriginal or treaty rights to hunt, fish or gather. Many changes are in play, centered on the element of water: the implementation of a new federal act regarding drinking water on First Nations reserves; numerous amendments to various federal and provincial environmental laws and regulations; and a recent set of ground-breaking court decisions on First Nations identity, aboriginal title, historic treaties and water.
A sense of urgency comes from these developments. Over the last number of decades, First Nations have been negotiating complex and unwieldy relationships (or the absence of relationship) with federal, provincial/territorial and municipal governments regarding water — for spiritual/ceremonial use, domestic use, waste disposal, and economic development; and as a function of treaty and aboriginal rights and title. Over this time, the laws and standards used to frame such relationship(s) have been “mainstream” or Canadian.
This thesis proposes that in combination with powerful Indigenous legal traditions, the new constitutional and legislative paradigm signifies a transformative and re-formative shift with regard to First Nations and water. / Graduate
|
623 |
An Analysis of the Microbial Quality of Packaged Water in Four Sites in Latin AmericaFeeser, Karla 13 May 2016 (has links)
INTRODUCTION: Diarrheal disease contributes to an estimated 1.5 million deaths each year, including 760,000 deaths among children under the age of five. Of those, approximately 500,000 are attributable to inadequate drinking water. In areas where piped water is unsafe, unreliable or economically impossible, packaged water sold by private vendors can play an important role in meeting the water needs of these populations. As the activity and importance of packaged water vendors grow, more data is needed to assess the quality of water sold, and to inform policies that regulate the private water sector throughout the world.
AIM: This pilot study seeks to identify factors that may contribute to the deterioration of packaged water quality.
METHODS: Small packaged water enterprises (SWEs) operating in the following cities were visited twice between May 2014 and September 2015: La Paz, Bolivia; Tegucigalpa, Honduras; and Muisne and Tena, Ecuador. A brief survey was conducted with each distributor, and a facility tour was completed. Water samples were collected directly from the purification system and water packaged in both reusable and disposable containers were purchased. Samples were tested for total coliform and E. coli bacterial contamination on the day of collection and over the course of 28 days. Data was analyzed using descriptive statistics, including median as the measure of central tendency, and frequency where the main outcome was presence or absence of either total coliform bacteria or E. coli. To determine the factors that were most associated with water quality deterioration, logistic regression was performed.
RESULTS: A total of 616 samples were collected. This study found that 52% of the packaged water examined was contaminated with total coliform bacteria. Raw, untreated water and treated water packaged in reusable containers were most likely to be contaminated with total coliform bacteria and E.coli compared to treated water taken directly from the system. There was no significant association between water treatment or bottle disinfection protocols and total coliform or E. coli contamination.
DISCUSSION: The study succeeded in identifying at what stage and in what type of container water is most likely to be contaminated with bacterial water-quality indicators. Furthermore, it highlights the heterogeneity that exists in terms of types of water sold, water treatment systems, and sanitizing protocols among SWEs in Central and South America. Reusable containers are vulnerable to contamination with total coliform bacteria and E. coli, even when filled with clean water, thus the contamination may be due to inadequate disinfection between uses. These results may have implications for national or international policies that regulate private water enterprises, and can inform guidelines for packaged water distributors in particular. Further research is needed to identify optimal cleaning methods for reusable containers that are practical for use in lower resource settings.
|
624 |
Environmental and management considerations in the design and operation of water supply facilities陳冠良, Chan, Koon-leung, Jeffrey. January 1993 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
625 |
The combined fouling of nanofiltration membranes by particulate solidsand dissolved organics in wastewater treatment and reuseLaw, Ming-chu, Cecilia, 羅明珠 January 2009 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
|
626 |
Cómo Determinar la Cantidad de Agua de Riego Aplicada a una Parcela (Spanish)Martin, Edward 04 1900 (has links)
3 pp. / Determining the Amount of Irrigation Water Applied to a Field (AZ1157) / Critical to any irrigation management approach is an accurate estimate of the amount of water applied to a field. Too little water causes unnecessary water stress and can result in yield reductions. Too much water can cause water logging, leaching, and may also result in loss of yield. This publication discusses how to set the water amount and the time period, when taking the system's efficiency into consideration.
|
627 |
Determining the Amount of Irrigation Water Applied to a FieldMartin, Edward 08 1900 (has links)
3 pp. / Critical to any irrigation management approach is an accurate estimate of the amount of water applied to a field. Too little water causes unnecessary water stress and can result in yield reductions. Too much water can cause water logging, leaching, and may also result in loss of yield. This publication discusses how to set the water amount and the time period, when taking the system's efficiency into consideration.
|
628 |
Arizona: Know Your Water (Spanish) [Conoces tu Agua Arizona?]Artiola, Janick, Moxley, Jacqueline C., Farell-Poe, Kathryn L. 06 1900 (has links)
110 pp.
|
629 |
Computerized water distribution management for the Upper Pampanga River Project, PhilippinesAldovino, Lino Pineda,1945- January 1977 (has links)
This study is concerned with the development of a model for realtime water distribution management for rice crop production in the Upper Pampanga River Project (Philippines). The model utilizes a management technique which considers water distribution at the farm level on a system-wide basis under the constraints of the present users and the physical system situations. The intent of the project is to rely as much as possible on the available uncontrolled streamflows and rainfall during the wet season in order to minimize releases from the Pantabangan reservoir, and thus conserve most of the impounded water for irrigation during the dry season. A computerized model which incorporates a parameter prediction-correction technique is developed for calculating the daily water scheduling for the entire canal network of the UPRP. To determine how much water is needed, a daily water budget at each of the 2,216 rotation areas is performed in conjunction with the daily predicted uncontrolled streamflows, rainfall, varying water requirement, and water status at the farm level. Subsequent delivery correction schedules are determined based on the degree of the prediction error. Studies were conducted for the determination of the appropriate rainfall prediction scheme used in the scheduling model. Selection of the scheme was done through simulation of field operations at the farm level and by the application of the rainfall-use efficiency criterion. Time lags along the Pampanga River and the canal network were analyzed to determine the possibility of supplying the entire network from the Pantabangan Dam within 24 hours. The idealized solution of the problem of inequitable distribution of water within a rotation unit is also presented. The ability of the model to provide situation-and-user-oriented guidelines for water distribution activities is demonstrated.
|
630 |
A multi-criteria water quality index for optimal allocation of reclaimed municipal wastewaterYu, John Kuo-an,1944- January 1977 (has links)
Use-oriented benefits and treatment cost analysis have been incorporated into a water quality index to derive economically optimized pollutant concentrations for use in the development of waste water treatment programs. This multi-criteria water quality index can be used in decision-making at federal and local governmental levels. Five major pollutants (coliforms, nitrogen, phosphorus, suspended solids, and detergent) were considered in the treatment of municipal wastewater. With each higher level of improvement, the treatment costs increase proportionally, but the benefits associated with the reuse of this treated wastewater also increase in all cases except that of nutrient removal for agricultural use. Listed in descending order of their general utility, possible uses of reclaimed water include water supply, recreation, irrigation, industrial use, waste disposal, transportation, and commercial fishery. The optimal concentration of a pollutant was defined as that point at which the marginal costs of its removal equal the marginal benefits thereby obtained. The optimum net benefits associated with each kind of reclamation are derived simultaneously. The multicriteria water quality index is a combination of the maximum net benefits and the water quality index of the optimal individual concentrations. Walski and Parker's water quality index was used in rating water quality. This methodology was applied to the Tucson region for the expediency of acquiring data. Possible uses considered for the reclaimed municipal wastewater included agricultural irrigation and recreational lakes in the Tucson metropolitan area. Results from this study indicate that the multi-criteria water quality index is zero dollars, or (NB = $1.83•10⁶, WQI = 0). Similar evaluations for other cities, made in the same way, would permit ranking of this index. This ranking would be useful for making decisions concerning the allocation of regional funds for treating municipal wastewater. This approach could also be used on a local level for determining optimal concentrations of pollutants and for optimal allocation of the treated water.
|
Page generated in 0.0725 seconds