Spelling suggestions: "subject:"water esource managemement."" "subject:"water esource managementment.""
21 |
A Novel Antibody-Dependent MC-LR Detecting Biosensor for Early Warning of Harmful Algal Blooms (HABs)Stoll, Stephanie 01 January 2022 (has links) (PDF)
Microcystins (MCs) are toxins produced by cyanobacteria commonly found in harmful algal blooms (HAB) occurring in many surface waters. Due to their toxicity to humans and other organisms, the World Health Organization (WHO) set a guideline of 1 µg/L for microcystin-leucine-arginine (MC-LR) in drinking water. However, current analytical techniques for the detection of MC-LR such as liquid chromatography-mass spectrometry (LC-MS) and enzyme-linked immunosorbent assay (ELISA) are costly, bulky, time-consuming, and mostly conducted in a laboratory, requiring highly trained personnel. Therefore, an analytical method that can be used in the field for rapid determination is essential. In this study, an Anti-MC-LR/MC-LR/Cysteamine coated screen-printed carbon electrode (SPCE) biosensor was newly developed to detect MC-LR, bioelectrochemically, in water. The functionalization of the electrode surface was examined using scanning electron microscopy-energy dispersive X-Ray spectroscopy (SEM-EDX) and X-Ray photoelectron spectroscopy (XPS). The sensor performance was evaluated by electrochemical impedance spectroscopy (EIS), obtaining a linear working range of MC-LR concentrations between 0.1 and 100 µg/L with a limit of detection (LOD) of 0.69 ng/L. Natural water samples experiencing HABs were then collected and analyzed using the developed biosensor and validated using ELISA, demonstrating the excellent performance of the biosensor with a relative standard deviation (RSD) of 0.65%. The interference and selectivity tests showed a minimal error and RSD values against other common MCs and possible coexisting ions found in water, suggesting high selectivity and low sensitivity of the biosensor. The biosensor showed acceptable functionality with a shelf life of up to 12 weeks. Overall, the Anti-MC-LR/MC-LR/Cysteamine/SPCE biosensors can be an innovative solution with characteristics that allow for in situ, low-cost, and easy-to-use capabilities which are essential for developing an overarching and integrated "smart" environmental management system.
|
22 |
Influence of marinas on hydrocarbons in sediments of two estuarine creeksVoudrias, Evangelos Alexandros 01 January 1981 (has links)
No description available.
|
23 |
A Method for Evaluating the Long-Term, Cumulative Impacts of Tidal Marsh Alterations: The York River System, a Case StudyZacherle, andrew W. 01 January 1984 (has links)
No description available.
|
24 |
Modeling Flow and Nitrate Transport in Karst Groundwater BasinsGao, Yuan 01 January 2020 (has links) (PDF)
Understanding the groundwater flow in karst aquifers and the effect of best management practices (BMPs) on nitrate decrease in spring discharge is critical for effective management and protection of karst water resources. However, the control on the conduit network's impacts on spring discharge and nitrate concentration is not fully understood, and the cumulative effects of BMP on reducing nitrate in karst groundwater systems have not been evaluated at the basin scale. In this dissertation, a coupled Conduit Flow Process (CFPv2) and Conduit Mass Three-Dimensional (CMT3D) model was applied to evaluate the biosorption-activated media (BAM)-based BMP on nitrate removal in Silver Springs in Florida. It is found that the effect of BMP by implementing BAM blanket filters in twenty-six stormwater retention basins is limited; whereas, for implementing BAM blanket filters in 50% of the urban area, the nitrate-N concentration in spring discharge would be decreased by 10.7% in a normal hydrologic year. The controls on the contribution of conduit flow to spring discharge are evaluated. For aquifer with turbulent flow in a single conduit, the effects of three dimensionless numbers (Reynolds number, relative surface roughness, and hydraulic conductivity ratio) and recharge on conduit flow contribution are quantified. Moreover, the effects of conduit geometry and density on conduit flow contribution are evaluated for conduit networks. Finally, the prediction of long-term average discharge in ungauged basins is assessed for improving recharge estimation.
|
25 |
Ultraviolet Irradiation Combined with Chlorine Dioxide Pre-oxidation For Disinfection By-product ControlCampesino, Paula 01 January 2020 (has links) (PDF)
The use of ultraviolet (UV) light and chlorine dioxide (ClO2) as an advanced oxidation process (AOP) has been investigated at the bench-scale to understand the effects of their use on disinfection by-product (DBP) formation potential (FP) in chlorinated groundwater (GW) and surface water (SW) supplies. Two GWs and two SWs of varying qualities were subject to a series of AOP treatment sequences at the bench scale: sodium hypochlorite, to serve as a baseline; ClO2-Cl2, UV-Cl2, and UV-ClO2-Cl2. In these treatment sequences, Cl2 is used as a primary and secondary disinfectant. Several water quality parameters were measured throughout the experiments, including chlorite (ClO2-) and chlorate (ClO3-) when ClO2 was used for process testing. Total trihalomethane (TTHM) FP curves were developed for each experiment along with the 7-day haloacetic acid (HAA) FP. The treatment sequence UV-ClO2 followed by Cl2 addition for GW supplies was shown to remove between 8 and 35 percent of the TTHM FP as compared to little to no change in formation potential with UV treatment alone followed by Cl2 addition. The SW supplies resulted in reductions between 16 and 27 percent for the treatment sequence UV-ClO2 followed by Cl2, approximately double the reduction from ClO2 alone followed by Cl2. GW treatment using the UV-ClO2 AOP followed by Cl2 was found to increase HAA formation, in one case by almost 50 percent compared to the baseline HAA concentrations. The research indicated the reduction of DBP FP AOP effectiveness to reduce DBP formation was highly dependent on the specific source water type and quality.
|
26 |
Evaluating Floating Treatment Wetlands to Improve Nitrogen Removal in a Wet Detention PondMarimon, Zachary 01 January 2016 (has links)
Wet detention ponds are used for stormwater treatment across the United States and reduce most pollutants by at least 60%, but only remove 30% of total nitrogen. Floating Treatment Wetlands (FTWs) are an emerging technology that uses aquatic plants suspended in the pelagic zone to remove nitrogen through vegetative assimilation and microbial denitrification. A before-after field experiment evaluated nitrogen removal in a an existing pond in Orlando, FL, retrofitted with BioHaven® FTWs planted with the aquatic macrophytes Juncus effusus (Soft Rush) and Pontederia cordata (Pickerelweed). Surface water samples were used to compare the nitrogen removal performance of the pond under both storm and non-storm conditions during a pre-analysis phase (control) to post-analysis after FTW deployment. The evaluation revealed similar TN removals in non-storm conditions during pre-analysis and post-analysis periods (-1% and -3%, respectively). During storm conditions, there was a negative TN removal of -26% in the preanalysis compared to the positive 29% removal post-analysis. In addition, nitrogen concentrations for organic-nitrogen, ammonia/ammonium, and nitrites/nitrates were used as input for calibrating and validating a system dynamics model to predict multiple, interacting nitrogen species' transformation and translocation across the abiotic and biotic components of water, sediment, plants, and atmosphere. The validated model created in STELLA v.9.4.1 was used to simulate alternative designs to achieve maximum nitrogen removal based on the treatment efficiency in the evaluation. Simulations predicted 60% FTW coverage at the experimental planting density (22 per m2) could achieve maximum nitrogen removal. Alternatively, similar nitrogen removal could be achieved at only 15% FTW coverage by increasing plant density. The model can be used as a lowcost tool for designing FTW technology applications and monitoring nitrogen transport.
|
27 |
Ichetucknee Springs: Measuring the Effects of Visitors on Water Quality Parameters through Continuous Monitoring.Faraji, Sarah 01 January 2017 (has links)
Ichetucknee Springs System is in north central Florida, under the jurisdiction of the Suwannee River Water Management District (SRWMD). The Ichetucknee River is one of the most pristine spring-fed rivers in Florida and became a state park in 1970. Over 400,000 people visited the Ichetucknee Springs State Park in 2016. From that total, over 130,000 people came during the tubing season alone (Memorial Day to Labor Day). During the tubing season, only 750 visitors per day are allowed to launch from the North Launch, near the Ichetucknee Head Spring. The park enforces visitor usage of the river during these time frames to protect the integrity of the aquatic vegetation and aquatic organisms in the northern portion of the River. The objective of this study is to evaluate the response of water quality from the Head Spring to the seasonal changes in visitor numbers to the Park. Water quality parameters were continuously monitored and recorded by a SRWMD station using a YSI EXO2 and SUNA nitrate sensor: temperature, turbidity, pH, specific conductivity, dissolved oxygen content, and nitrates (NO2+NO3). Water quality data from April 2015 to September 2017 was reviewed and processed into max daily values that were compared to daily visitor counts. Results from the statistical analysis indicate there is a significant difference in turbidity from the Head Spring during the tubing season and outside the tubing season (Kruskal-Wallis, p < 0.001), which results from higher visitor counts during the weekends of the tubing season. However, due to inconsistency of water quality readings and equipment damage, some data were lost or outside the range of monitoring capabilities; which may have resulted in decreased correlation between water quality and daily visitor counts. Continued evaluation of water quality by continuous monitoring is warranted as it can assist the SRWMD and Ichetucknee Springs State Park Staff better monitor and evaluate the health of the Ichetucknee Springs System.
|
28 |
Groundwater Modeling for Assessing the Impacts of Natural Hazards in East-Central FloridaXiao, Han 01 January 2017 (has links)
In coastal east-central Florida (ECF) , the low-lying coastal alluvial plains and barrier islands have a high risk of being inundated by seawater due to climate change effects such as sea-level rise, changing rainfall patterns, and intensified storm surge from hurricanes., This will produce saltwater intrusion into the coastal aquifer from infiltration of overtopping saltwater. In the inland ECF region, sinkhole occurrence is recognized as the primary geologic hazard causing massive financial losses to society in the past several decades. The objectives of this dissertation are to: (1) evaluate the impacts of sea-level rise and intensified storm surge on the extent of saltwater intrusion into the coastal ECF region; (2) assess the risk level of sinkhole occurrence in the inland ECF region. In this dissertation, numerical modeling methods are used to achieve these objectives. Several three-dimensional groundwater flow and salinity transport models, focused on the coastal ECF region, are developed and calibrated to simulate impacts of sea-level rise and storm surge based on various sea-level rise scenarios. A storm surge model is developed to quantify the future extent of saltwater intrusion. Several three-dimensional groundwater flow models, focused on the inland ECF region, are developed and calibrated to simulate the spatial variation of groundwater recharge rate for analyzing the risk level of sinkhole occurrence in the geotypical central Florida karst terrains. Results indicate that sea-level rise and storm surge play a dominant role in causing saltwater intrusion, and the risk of sinkhole occurrence increases linearly with an increase in recharge rate while the timing of sinkhole occurrence is highly related to the temporal variation of the difference of groundwater level between confined and unconfined aquifers. The outcome will contribute to ongoing research focused on forecasting the impacts of climate change on the risk level of natural hazards in ECF region.
|
29 |
Assessing Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote SensingMostafiz, Chandan 01 January 2017 (has links)
Estuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals. These estuaries also withstand the worst of some natural disasters, especially hurricanes. The estuaries as well as the harbored ecosystems undergo significant changes in terms of water quality, vegetation cover etc. and these components are interrelated. When hurricane makes landfall it is necessary to assess the damages as quickly as possible as restoration and recovery processes are time-sensitive. However, assessment of physical damages through inspection and survey and assessment of chemical and nutrient component changes by laboratory testing are time-consuming processes. This is where remote sensing comes into play. With the help of remote sensing images and regression analysis, it is possible to reconstruct water quality maps of the estuary affected. The damage sustained by the vegetation cover of the adjacent coastal watershed can be assessed using Normalized Difference Vegetation Index (NDVI) The water quality maps together with NDVI maps help observe a dynamic sea-land interaction due to hurricane landfall. The observation of hurricane impacts on a coastal watershed can be further enhanced by use of tasseled cap transformation (TCT). TCT plots provide information on a host of land cover conditions with respect to soil moisture, canopy and vegetation cover. The before and after TCT plots help assess the damage sustained in a hurricane event and also see the progress of recovery. Finally, the use of synthetic images obtained by use of data fusion will help close the gap of low temporal resolution of Landsat satellite and this will create a more robust monitoring system.
|
30 |
Assessment of a Surface Water Supply for Source and Treated Distribution System QualityRodriguez, Angela 01 January 2019 (has links)
This study focused on providing a source to tap assessment of surface water systems with respect to (i) the use of alternative biomonitoring tools, (ii) disinfection byproduct (DBP) formation and control, and (iii) corrosion control. In the first study component, two water systems were microbiologically evaluated using adenosine triphosphate (ATP) bioluminescence technology. It was determined that microbial ATP was useful as a surrogate for biomonitoring within a surface water system when paired with traditional methods. Although microbial activity differed between distribution systems that used either chloramine or chlorine disinfectant, in both cases flowrate and season affected microbial ATP values. In the second study component, total trihalomethanes (TTHM) and haloacetic acids (HAA5) DBP formation and disinfectant stability was investigated using a novel DBP control process. The method relied on a combination of sulfate, ultraviolet light irradiation, pH, and aeration unit operations. Results indicate respective decreases in 7-day TTHM and HAA5 formation potentials of 36% - 57% and 20% - 47% for the surface waters investigated. In the third component of this work, a corrosion study assessed the effect of disinfectant chemical transitions on the corrosion rates of common distribution system metals. When a chlorine based disinfection system transitioned between chlorine and chloramine, mild steel corrosion increased by 0.45 mils per year (mpy) under chloramine and returned to baseline corrosion rates under chlorine. However, when a chloramine based disinfection system transitioned between chloramine and chlorine, mild steel corrosion increased in tandem with total chlorine levels. Unlike the chlorine system, the mild steel corrosion rates did not return to baseline under chloramine after exposure to 5 mg/L of total chlorine. Surface water systems should consider the use of ATP as a surrogate for biomonitoring, consider the novel treatment process for DBP formation control, and consider corrosion control in disinfectant decision-making activities.
|
Page generated in 0.1218 seconds