• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of the use of ceramic water filters with silver nitrate as point-of-use water treatment devices in Dertig, North West Province, South Africa

Ndebele, Nkosinobubelo 03 1900 (has links)
MESHWR / Department of Hydrology and Water Resources / Water borne diseases due to inadequate and unsafe drinking water is a global challenge that has led to a significant number of deaths and illnesses reported annually. These diseases are prevalent in less-developed countries, especially in rural areas where there is shortage of basic infrastructure and inadequate funds for piped water systems in individual households. Community members are forced to resort to collecting water from communal water points and later storing the water in containers for daily use. Recontamination of microbiologically safe drinking water during and after collection from the water source has been recognised as a problem; hence treating water at household level is one way to provide potable water for affected communities. The microbiological quality of household water may be improved by using point-of-use treatment technologies such as chemical disinfection, solar disinfection and ceramic water filters. Some of these technologies are expensive, less effective and difficult to implement in rural communities. This research thus focused on ceramic water filters and finding an appropriate method for silver application so as to produce filters that are effective in both the provision of clean drinking water and the release of silver levels that are safe for human consumption. An assessment of the efficiency of ceramic water filters made with silver nitrate as point-of -use water treatment device in Dertig Village, North West Province, South Africa was carried out. During production of filters made with silver nitrate, the filters undergo firing in an electric kiln and ionic silver is reduced to metallic nanopatches dispersed throughout the porous ceramic media. Both filters made with silver nitrate and conventional silver nanoparticles impregnated ceramic water filters were manufactured at the PureMadi Dertig Ceramic Filter Facility, South Africa. Resulting filters were evaluated and quantified for total coliform and E. coli removal as well as silver concentration in the effluent. Ceramic water filters made with silver nitrate had a high removal efficiency for total coliforms (94.7%) and E. coli (99.3%). A comparison of the performance of filters made with silver nitrate and silver nanoparticles in the provision of potable water was carried out and results showed that the different filters had similar levels of total coliform and E. coli removal, although the silver nitrate filters produced the highest average removal of 97.23% while silver nanoparticles filters produced the lowest average removal of 85.43%. Reasonable silver levels were obtained in effluent from all filters. Average effluent silver levels were 0.07±0.04mg/L, 0.6±1.10 mg/L and 0.8±1.0mg/L for 1 g, 2 g and silver nanoparticle filters, respectively (below the EPA and WHO standard of 100 mg/L). Because silver nitrate filters resulted in the lowest effluent silver concentrations, this could potentially increase the effective life span of the filter. A cost analysis of the process proved that it was cheaper to produce ceramic water filters using silver nitrate as the chemical can be purchased locally and also eliminates labour related costs. Thus, filters made using silver nitrate could potentially improve performance, reduce production costs, and increase safety of production for workers. The results obtained from this study will be applied to improve the ceramic filtration technology as point-of-use water treatment device in an effort to reduce health problems associated with microbial contamination of water stored at household level. / NRF
2

Modeling of the Thermal Output of a Flat Plate Solar Collector

Munich, Chad Thomas January 2013 (has links)
Traditionally, energy capture by non-concentrating solar collectors is calculated using the Hottel-Whillier Equation (HW): Q(u)=A(c)*F(r)*S-A(c)*F(r)*U(l)*(T(fi)-Tₐ), or its derivative: Q(u)=A(c)*F(r)*S-A(c)*F(r)*U(l)*((T(fi)-T(fo))/2-Tₐ). In these models, the rate of energy capture is based on the collector's aperture area (A(c)), collector heat removal factor (F(r)), absorbed solar radiation (S), collector overall heat loss coefficient (U(l)), inlet fluid temperature (T(fi)) and ambient air temperature (Tₐ). However real-world testing showed that these equations could potentially show significant errors during non-ideal solar and environmental conditions. It also predicts that when T(fi)-Tₐ equals zero, the energy lost convectively is zero. An improved model was tested: Q(u)=A(c)F(r)S-A(c)U(l)((T(fo)-T(fi))/(ln(T(fo)/T(fi)))-Tₐ) where T(fo) is the exit fluid temperature. Individual variables and coefficients were analyzed for all versions of the equation using linear analysis methods, statistical stepwise linear regression, F-Test, and Variance analysis, to determine their importance in the equation, as well as identify alternate methods of calculated collector coefficient modeling.
3

Best management practices to attain zero effluent discharge in South African industries / C.G.F. Wilson

Wilson, Christiaan Georg Frederick January 2008 (has links)
Wastewater treatment is traditionally considered a separate part of an industrial activity, hardly connected to the production units themselves. It is nowadays essential to ensure that the quality of water is not degraded and that water that has been polluted is purified to acceptable levels, especially in a country with scarce water resources such as South Africa. Where water quality is concerned, Zero Effluent Discharge (ZED) is the ultimate goal, in order to avoid any releases of contaminants to the water environment. The push towards ZED in South Africa is also promoted further by the South African Government’s plan to reduce freshwater usage and the pollution of water sources due to the water scarcity in a semi-arid South Africa. Future legislation will see a marked increase in the cost of freshwater usage and/or a possible limitation of the quantity of freshwater available. There is a need in the South African Industry for a framework of Best Management Practices (BMPs) in order to provide interested stakeholders, which include not only industry, but also academia, environmental interest groups and members of the public, with a procedure to meet the ZED statutory requirements. This dissertation explores the regulatory requirements and current environmental management practices implemented. A framework of BMPs to successfully attain ZED status in South African industries is developed from the literature study and the researcher’s own experience. The BMP framework embodies practices for one integrated strategy within three dimensions. The three dimensions of the BMP framework were selected to differentiate between BMPs for management (Governance BMPs), the project management team responsible for ZED projects (Project Management BMPs) and the implementation of preventative and operational measures to obtain and sustain ZED compliance for South African industries. The BMP framework was validated against the practices applied by Mittal Steel. The Mittal Steel plant in Vanderbijlpark implemented various projects, reduced the intake of water and eliminated the discharge of effluent and by doing this successfully realised their ZED status. The BMP framework will enable South African industries to develop their own BMPs Manual which should be specific to their operational and environmental requirements. The implementation of these BMPs should be tailored and used accordingly to demonstrate compliance to ZED requirements in South African industries. / Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2009.
4

Best management practices to attain zero effluent discharge in South African industries / C.G.F. Wilson

Wilson, Christiaan Georg Frederick January 2008 (has links)
Wastewater treatment is traditionally considered a separate part of an industrial activity, hardly connected to the production units themselves. It is nowadays essential to ensure that the quality of water is not degraded and that water that has been polluted is purified to acceptable levels, especially in a country with scarce water resources such as South Africa. Where water quality is concerned, Zero Effluent Discharge (ZED) is the ultimate goal, in order to avoid any releases of contaminants to the water environment. The push towards ZED in South Africa is also promoted further by the South African Government’s plan to reduce freshwater usage and the pollution of water sources due to the water scarcity in a semi-arid South Africa. Future legislation will see a marked increase in the cost of freshwater usage and/or a possible limitation of the quantity of freshwater available. There is a need in the South African Industry for a framework of Best Management Practices (BMPs) in order to provide interested stakeholders, which include not only industry, but also academia, environmental interest groups and members of the public, with a procedure to meet the ZED statutory requirements. This dissertation explores the regulatory requirements and current environmental management practices implemented. A framework of BMPs to successfully attain ZED status in South African industries is developed from the literature study and the researcher’s own experience. The BMP framework embodies practices for one integrated strategy within three dimensions. The three dimensions of the BMP framework were selected to differentiate between BMPs for management (Governance BMPs), the project management team responsible for ZED projects (Project Management BMPs) and the implementation of preventative and operational measures to obtain and sustain ZED compliance for South African industries. The BMP framework was validated against the practices applied by Mittal Steel. The Mittal Steel plant in Vanderbijlpark implemented various projects, reduced the intake of water and eliminated the discharge of effluent and by doing this successfully realised their ZED status. The BMP framework will enable South African industries to develop their own BMPs Manual which should be specific to their operational and environmental requirements. The implementation of these BMPs should be tailored and used accordingly to demonstrate compliance to ZED requirements in South African industries. / Thesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2009.

Page generated in 0.2279 seconds