Spelling suggestions: "subject:"water anda development"" "subject:"water ando development""
191 |
Reclamation of Wastewater for Open Access IrrigationHager, Donald G. 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona
|
192 |
Hydrology and Water Resources in Arizona and the Southwest, Volume 14 (1984)07 April 1984 (has links)
Complete issue of the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona
|
193 |
Stream Order in Ephemeral Watercourses: A Preliminary Analysis from the Sonoran DesertJohnson, R. Roy, Warren, Peter L., Anderson, L. Susan, Lowe, Charles H. 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona
|
194 |
Application of a Finite-Element Model to Overland Flow and Channel Flow in Arid LandsEl-Ansary, Amgad S., Contractor, Dinshaw N. 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona / A mathematical model to simulate overland and channel flow using the finite element technique was adapted and applied to a small semi-arid rangeland watershed (2,035 acres) in the USDA Walnut Gulch experimental watershed in the Southwestern United States. The Holtan equation was used to estimate precipitation excess, and with the precipitation excess as input, the finite-element technique was used to route overland and channel flow. The program was structured with sufficient flexibility so that effect of land use changes either gradual or sudden, on runoff hydrograph could be estimated. Abstraction losses in the stream channel are accounted for. The simulation model predictions are compared with field data for several storms and the comparisons are satisfactory; however, improvements could be made with additional data on antecedent moisture content and better estimates of abstraction losses. Based on these comparisons, it is felt that the model can be used to estimate runoff hydrographs from ungaged watersheds in semi-arid regions.
|
195 |
A Novel Method of Evaporation Suppression in a Water Harvesting SystemKarpiscak, Martin M., Foster, Kennith E., Rawles, R. Leslie 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona / A demonstration agrisystem located in an area receiving less than 250 mm rainfall annually has been constructed through a cooperative program between the City of Tucson and the University of Arizona. Mondell pine, aleppo pine, jojoba, grapes, eucalyptus, olives, and other crops were cultivated in a 4 ha NaC1 treated catchment system designed to concentrate rainfall on plants and channel excess water into a system of storage reservoirs. Evaporation was reduced from an 80 foot diameter above ground reservoir by means of 225,000 plastic film cans, at a cost of approximately 50 cents /ft². Data acquired from evaporation pans indicates a 50 to 70 percent reduction in evaporation of the stored water. Additionally, this research has provided data that 1) demonstrates the economic potential for agriculture of currently retired farmland, 2) investigates the feasibility of applying water harvesting method for agricultgural purposes in a semiarid region, and 3) evaluates water harvesting as an alternative to meet the ever increasing demand for water.
|
196 |
Hydrogeology of the Camp Verde Area, Central ArizonaGlotfelty, Marvin 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona / The area of study covers 26.5 square miles ranging from the confluence of Beaver Creek and Verde River to the north, to the confluence of West Clear Creek and the Verde River to the south. Ground water depths for 471 domestic and agricultural wells were obtained, and selected wells were field checked to insure accuracy of data. A ground water contour map was constructed from well data at a 1:24,000 scale with a 20 foot contour interval. Aquifer characteristics of the study area were obtained via pump test data. Aquifer characteristics were then plugged into a USGS 2-D computer model, which has been modified to give the best representation of the Verde aquifer. The 2-D computer program and the 1:24,000 ground water map will be useful predictive tools to prevent overdraft and poor well spacing as development of the study area leads to greater withdrawal demands.
|
197 |
Santa Cruz River Changes South of TucsonLowe, Phillip O. 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona
|
198 |
The Biodynamic Treatment of WastewaterBuras, Netty 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona / A wastewater treatment is proposed. It is based on: 1. The assumption that the changes taking place during the transformation of wastewater into effluent are unidirectional processes, entailing a number of well- defined sequential stages, and 2. The knowledge that the aerobic bacterial populations present in wastewater are able to decompose efficiently the organic matter in the wastewater, given optimal conditions for their development. Preliminary experiments in which these assumptions have been tested showed the production of a high quality effluent, as measured by the conventional chemical, physical and public health standards. No pathogenic bacteria or human enteric viruses have been recovered from the effluent so produced. A comparison between the processes of the "conventional biological" and a "biodynamic" treatment will be presented.
|
199 |
Microbial Contamination of Groundwater in the Pinetop-Lakeside Area of Northern ArizonaMohrbacher, Carl, De Leon, Ricardo, Toranzos, Gary A., Mullinax, Rebecca L., Gerba, Charles P. 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona / The Pinetop-Lakeside area located in southeastern Navajo County, Arizona, has experienced several outbreaks of probable waterborne gastroenteritis. The many on -lot sewage disposal systems, thin soils and fractured crystalline rock aquifers make this area especially vulnerable to biological degradation of the groundwater supply. This study was designed to assess the extent of bacteriological and virological contamination of groundwater and relationships between indicatior bacteria, coliphages and human pathogenic viruses. Twenty different wells were selected and monitored for conforms, fecal conforms, fecal streptococci, coliphages, enteric viruses, and various physical and chemical properties of the water. Extensive microbial contamination of the groundwater was observed, which increased dramatically after a period of heavy rainfall. Almost 90% of all well samples contained coiform levels in excess of drinking water standards.
|
200 |
The Growth and Survival of "Naturally-Occurring" Bacteria in Well WaterStetzenbach, L. D., Yates, M. V., Gerba, Charles P., Sinclair, N. A. 07 April 1984 (has links)
From the Proceedings of the 1984 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona-Nevada Academy of Science - April 7, 1984, Flagstaff, Arizona / Ground water is an increasingly significant source of potable water that has traditionally been considered safe for human consumption without treatment. Although routinely monitored for the presence of coliforms, information concerning the non-coliform bacteria present in well water has been largely ignored. The purpose of this study was to demonstrate the ability of non-coliform, "naturally-occurring" bacteria to increase in number and persist in unamended well water. Water was collected from 19 continuously pumping wells throughout the Tucson basin and stored at in situ well water temperatures. Bacteria were enumerated using epifluorescent microscopy at predetermined intervals over a 30-day period. Greater than 3 log increases in bacterial numbers were noted after 24 hours of incubation. Maximum numbers were achieved after 3 days followed by a gradual decline ranging from 0.39-1.84 logs. Non-coliform, opportunistic pathogens have been isolated from Tucson well water. Their increase in number and survival in well water may impact the quality of untreated drinking water.
|
Page generated in 0.082 seconds