• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissipation and eddy mixing associated with flow past an underwater turbine

Unknown Date (has links)
The objective of this thesis is to analyze the flow past an ocean current turbine using a finite volume Navier-Stokes CFD solver. A full 3-D RANS approach in a moving reference frame is used to model the flow. By employing periodic boundary conditions, one-third of the flow-field is analyzed and the output is replicated to other sectors. Following validation of the computation with an experimental study, the flow fields and particle paths for the case of uniform and sheared incoming flows past a generic turbine with various blade pitch angles are evaluated and analyzed. Flow field and wake expansion are visualized. Eddy viscosity effects and its dependence on flow field conditions are investigated. / by Zaqie Reza. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
2

Hydrodynamic analysis of ocean current turbines using vortex lattice method

Unknown Date (has links)
The main objective of the thesis is to carry out a rigorous hydrodynamic analysis of ocean current turbines and determine power for a range of flow and geometric parameters. For the purpose, a computational tool based on the vortex lattice method (VLM) is developed. Velocity of the flow on the turbine blades, in relation to the freestream velocity, is determined through induction factors. The geometry of trailing vortices is taken to be helicoidal. The VLM code is validated by comparing its results with other theoretical and experimental data corresponding to flows about finite-aspect ratio foils, swept wings and a marine current turbine. The validated code is then used to study the performance of the prototype gulfstream turbine for a range of parameters. Power and thrust coefficients are calculated for a range of tip speed ratios and pitch angles. Of all the cases studied, the one corresponding to tip speed ratio of 8 and uniform pitch angle 20 produced the maximum power of 41.3 [kW] in a current of 1.73 [m/s]. The corresponding power coefficient is 0.45 which is slightly less than the Betz limit power coefficient of 0.5926. The VLM computational tool developed for the research is found to be quite efficient in that it takes only a fraction of a minute on a regular laptop PC to complete a run. The tool can therefore be efficiently used or integrated into software for design optimization. / by Aneesh Goly. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.

Page generated in 0.0807 seconds