• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Semi-empirical approach to characterize thin water film behaviour in relation to droplet splashing in modelling aircraft icing

Alzaili, Jafar S. L. January 2012 (has links)
Modelling the ice accretion in glaze regime for the supercooled large droplets is one of the most challenging problems in the aircraft icing field. The difficulties are related to the presence of the liquid water film on the surface in the glaze regime and also the phenomena associated with SLD conditions, specifically the splashing and re-impingement. The steady improvement of simulation methods and the increasing demand for highly optimised aircraft performance, make it worthwhile to try to get beyond the current level of modelling accuracy. A semi-empirical method has been presented to characterize the thin water film in the icing problem based on both analytical and experimental approaches. The experiments have been performed at the Cranfield icing facilities. Imaging techniques have been used to observe and measure the features of the thin water film in the different conditions. A series of numerical simulations based on an inviscid VOF model have been performed to characterize the splashing process for different water film to droplet size ratios and impact angles. Based on these numerical simulations and the proposed methods to estimate the thin water film thickness, a framework has been presented to model the effects of the splashing in the icing simulation. These effects are the lost mass from the water film due to the splashing and the re-impingement of the ejected droplets. Finally, a new framework to study the solidification process of the thin water film has been explored. This framework is based on the lattice Boltzmann method and the preliminary results showed the capabilities of the method to model the dynamics, thermodynamics and the solidification of the thin water film.
2

Semi-empirical approach to characterize thin water film behaviour in relation to droplet splashing in modelling aircraft icing

Alzaili, Jafar S. L. 07 1900 (has links)
Modelling the ice accretion in glaze regime for the supercooled large droplets is one of the most challenging problems in the aircraft icing field. The difficulties are related to the presence of the liquid water film on the surface in the glaze regime and also the phenomena associated with SLD conditions, specifically the splashing and re-impingement. The steady improvement of simulation methods and the increasing demand for highly optimised aircraft performance, make it worthwhile to try to get beyond the current level of modelling accuracy. A semi-empirical method has been presented to characterize the thin water film in the icing problem based on both analytical and experimental approaches. The experiments have been performed at the Cranfield icing facilities. Imaging techniques have been used to observe and measure the features of the thin water film in the different conditions. A series of numerical simulations based on an inviscid VOF model have been performed to characterize the splashing process for different water film to droplet size ratios and impact angles. Based on these numerical simulations and the proposed methods to estimate the thin water film thickness, a framework has been presented to model the effects of the splashing in the icing simulation. These effects are the lost mass from the water film due to the splashing and the re-impingement of the ejected droplets. Finally, a new framework to study the solidification process of the thin water film has been explored. This framework is based on the lattice Boltzmann method and the preliminary results showed the capabilities of the method to model the dynamics, thermodynamics and the solidification of the thin water film.
3

Contributions to micromechanical modelling of transport and freezing phenomena within unsaturated porous media

Yang, Rong Wei, Yang, Rong Wei 23 September 2013 (has links) (PDF)
Micromechanical approach is employed to investigate the transport and freezing within unsaturated porous media. In unsaturated porous media, water film as well as disjoining pressure are introduced in the transport and freezing problems. In the modeling, it is found that, capillary layer along with pore water dominate the transport at high saturation degree (Sr>10%). However, water film will play a significant role in transport at low saturation degree (Sr<10%), and the diffusion coefficient will be lower than 3 to 4 orders of magnitude than that at higher saturation degree. A micromechanical model of freezing in unsaturated porous media is established. Micromechanical model of freezing is more physical based in nature. That is because different from poromechanical model of freezing media in which ice crystal pressure is introduced, the disjoining pressure of unfrozen water film instead of ice crystal pressure is introduced in the micromechanical model of freezing
4

Contributions to micromechanical modelling of transport and freezing phenomena within unsaturated porous media / Contributions à la modélisation micromécanique du transport et des phénomènes de gel dans les milieux poreux non saturés

Yang, Rong Wei 23 September 2013 (has links)
Approche micromécanique est utilisée pour étudier le transport et la congélation dans les milieux poreux non saturés. Dans les milieux poreux non saturés, film d'eau ainsi que la pression de disjonction sont introduits dans le transport et les problèmes de gel. Dans la modélisation, il est constaté que, couche capillaire avec l'eau interstitielle dominent le transport au degré de saturation élevé (Sr> 10%). Cependant, le film d'eau jouera un rôle important dans le transport à degré de saturation basse (Sr <10%), et le coefficient de diffusion sera faible que 3 à 4 ordres de grandeur à celle à degré de saturation élevé. Un modèle micromécanique de gel dans les milieux poreux non saturés est établi. Modèle micromécanique de congélation est plus physique basée dans la nature. En effet, différent du modèle poromécanique du milieu de congélation, dans lequel la pression de cristaux de glace est introduit, la pression de disjonction du film d'eau non gelée à la place de la pression de cristaux de glace est introduite dans le modèle micromécanique de congélation / Micromechanical approach is employed to investigate the transport and freezing within unsaturated porous media. In unsaturated porous media, water film as well as disjoining pressure are introduced in the transport and freezing problems. In the modeling, it is found that, capillary layer along with pore water dominate the transport at high saturation degree (Sr>10%). However, water film will play a significant role in transport at low saturation degree (Sr<10%), and the diffusion coefficient will be lower than 3 to 4 orders of magnitude than that at higher saturation degree. A micromechanical model of freezing in unsaturated porous media is established. Micromechanical model of freezing is more physical based in nature. That is because different from poromechanical model of freezing media in which ice crystal pressure is introduced, the disjoining pressure of unfrozen water film instead of ice crystal pressure is introduced in the micromechanical model of freezing
5

Studies of Thin Liquid Films Confined between Hydrophobic Surfaces

Li, Zuoli 12 December 2012 (has links)
Surface force measurements previously conducted with thiolated gold surfaces showed a decrease in excess film entropy (£GSf), suggesting that hydrophobic force originates from changes in the structure of the medium (water) confined between hydrophobic surfaces. As a follow-up to the previous study, surface force measurements have been conducted using an atomic force microscope (AFM) with hydrophobic silica surfaces at temperatures in the range of 10 to 40¢XC. The silica sphere and silica plate were treated by both chemisorption of octadecyltrichlorosilane (OTS) and physical adsorption of octadecyltrimethylammonium chloride (C18TACl). A thermodynamic analysis of the results show similar results for both of the samples, that both ""Sf and excess film enthalpy ("Hf) become more negative with decreasing thickness of the water layer between the hydrophobic surfaces and decreasing temperature. |"Hf | > |T"Sf| represents a necessary condition for the excess free energy change ("Gf ) to be negative and the hydrophobic interaction to be attractive. Thus, the results obtained with both the silylated and C18TACl-adosrbed silica surfaces in the present work and the thiolated gold suefaces reported before show hydrophobic forces originate from structural changes in the medium. Thermodynamic analysis of SFA force measurements obtained at various temperatures revealed that "Sf were much more negative in the shorter hydrophobic force ranges than in the longer ranges, indicating a more significant degree of structuring in the water film when the two hydrophobic surfaces are closer together. It is believed that the water molecules in the thin liquid films (TLFs) of water form clusters as a means to reduce their free energy when they cannot form H-bonds to neighboring hydrophobic surfaces. Dissolved gas molecules should enhance the stability of structured cluster due to the van der Waals force between the entrapped gas molecules and the surrounding water molecules1, which may enhance the strength of the hydrophobic force. Weaker long-range attractive forces detected in degassed water than in air-equilibrated water was found in the present work by means of AFM force measurements, supporting the effect of dissolved gas on the structuring of water. At last, temperature effects on hydrophobic interactions measured in ethanol and the thermodynamic analysis revealed similar results as those found in water, indicating that the hydrophobic force originates from H-bond propagated structuring in the mediums. / Ph. D.
6

Experimental and Modeling of Pneumatic Tire Performance on Ice

Jimenez, Emilio 23 April 2018 (has links)
The tire-ice interaction is a highly complex phenomenon, which has a direct influence on the overall performance of the pneumatic tire. From tire-terrain interaction dynamics, it is evident that icy road conditions and tire operational parameters play a vital role in determining the overall performance of the vehicle. With the reduction of traction available at the surface in icy conditions, the dynamics of the vehicle becomes more unpredictable, as the system can become unstable. In order to design an appropriate safety system, the tire-ice interaction must be closely investigated. Since the tire is the part of the vehicle that is in direct contact with the terrain during operation, it is critical to have an in-depth understanding of the contact mechanics at the contact patch. This study has led to the development and validation of an existing tire-ice model to further improve the understanding of the contact phenomena at the tire-ice interface. Experimental investigations led to a novel measurement technique in order to validate the semi-empirical based tire-ice contact model. The Advanced Tire-Ice Interface Model serves to simulate the temperature rise at the contact patch based on the pressure distribution in the contact patch, thermal properties of the tread compound and of the ice surface. Since its initial development, the advanced model is now capable of simulating the thin water film created from the melted ice, the prediction of tractive performance, the estimation of the viscous friction due to the water layer, and the influence of braking operations including the locked wheel condition. Experimental studies, carried out at the Terramechanics, Multibody, and Vehicle Systems (TMVS) Laboratory, were performed on the Terramechanics Rig. The investigation included measuring the bulk temperature distribution at the contact patch in order to validate the temperature rise simulations of the original Tire-Ice Model. The tractive performance of a P225/60R16 97S Standard Reference Test Tire and a 235/55R-19 Pirelli Scorpion Verde All-Season Plus XL were also investigated during this study. A design of experiment was prepared to capture the tire tractive performance under various controlled operating conditions. / Ph. D.
7

Nanotribology Of Emulsified Lubricants

Kumar, Deepak 06 1900 (has links) (PDF)
In case of metalworking operations, the purpose of lubrication is served by a complex mixture of two or more phases, these mixtures are known as metalworking fluids (MWFs). For many decades oil-in-water emulsions have been used as metalworking fluids. The particular advantage of using oil-in-water emulsion in metalworking operations is that it combines the cooling property of water and the lubrication property of the oil. To explain the lubrication mechanism for oil-in-water emulsions as metalworking fluids a variety of models and theories has been proposed. To understand the lubrication mechanism, the role of each ingredient in the tribological process needs to be studied. In the present study a model for lubrication which determines force and proximity regimes of droplets based on the droplet size distribution is proposed. Dynamic light scattering (DLS) is used to characterize the emulsions. The small droplets are found to be the ones which enhance lubricity. DLVO (Derjaguin-Landau-Verwey-Overbeek) theory is used to validate the results. The concentration and type of surfactant is found to be the performance controlling parameter. A further analysis of the three interfacial energetics; oil/water, oil/substrate, water/substrate, is studied in the presence and absence of surfactants with the help of a Goniometer, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM). Such energetics reflects the rate at which the excess surfactant molecules accumulate at the water/oil interface and desorb into the phases. The tribological response is recorded using AFM and the nanotribometer (NTR). Frictional response of the chemisorbed self-assembled monolayer of surfactant (sodium oleate) on the steel substrate reflects that a tribofilm helps in lubricating the contact under boundary lubrication by creating a low shear strength material. Water being the continuous phase in oil/water emulsion a thin water layer adjacent to steel substrate is always present. This thin layer on the solid substrate acts as a barrier to the lubricating oil droplets to reach the metal surface. The focus of the present work is also to investigate conditions which permit the disjoining of the water film to allow the oil to lubricate the metal substrate. AFM is used to study the interaction force between an oil droplet and the steel substrate through water. An oil encapsulated SiO2 colloidal probe used to simulate the oil droplet. The charge regulatory status of the substrates and interfaces are found to be critical in mapping the force characteristics when DLVO interaction is considered. The condition for activation of non-DLVO (hydration, hydrophobic, capillary) forces are also identified and found to be dependent on the physical states of surfaces. Disjoining of the thin film can be controlled by selecting surfactants based on interfacial energetics and attractive force characteristic can be achieved to facilitate lubrication.
8

Experimental Characterization and Modeling of Tire-Ice Interface

Mousavi, Hoda 18 March 2021 (has links)
Tire parameters play a very important role in tire performance. Depending on the driving conditions for which a given tire is designed, its parameters must be chosen appropriately (e.g., the radius of the tire, the width of the tire, material properties of different sections). Among tire characteristics, the material properties of the rubber compounds have a vital role in tire behavior. Previous studies show that the material properties of the rubber are highly dependent on temperature. Thus, a comprehensive study on the effect of the material properties of the rubber on tire performance for different temperatures as well as different road conditions is required. In this study, a theoretical model has been developed for tire-ice interaction. The temperature changes obtained from the model are used to calculate the height of the water film created by the heat generated due to the friction force. Next, the viscous friction coefficient at the contact patch is obtained. By using the thermal balance equation at the contact patch, dry friction is obtained. Knowing the friction coefficients for the dry and wet regions, the equivalent friction coefficient is calculated. The model has been validated using experimental results for three similar tires with different rubber compounds properties. For the experimental part of this study, four tires have been selected for testing. Three of them have identical tire geometry and structure but different rubber tread compounds. Several tests were conducted for the chosen tires in three modes: free-rolling, braking, and traction. The tests were performed for two different normal loads (4 kN and 5.6 kN), two different inflation pressures (21 psi (144.8 kPa) and 28 psi (193 kPa)), and three tire temperatures levels (-10°C, -5°C, and -1 °C). The Terramechanics Rig at TMVS at Virginia Tech has been used for conducting the tests. The results from this study show the sensitivity of the magnitude of the tractive force with respect to parameters such as tire temperature, normal load, etc. The results also indicate that the tire with the lowest value of the Young modulus has the highest traction among all four tires used in this study. The model developed can be used to predict the temperature changes at the contact patch, the tire friction force, the areas of wet and dry regions, the height of the water film for different ice temperatures, different normal loads, etc. The results from this study coincide with the obtained results from the experiments. According to the data available, tire B with the smallest value of Young modulus and the smallest value of the specific heat parameter was shown to have the highest friction coefficient in both simulation and experiment. After validating the results using experimentally collected data, the model was used to perform a sensitivity analysis on the tire performance with respect to six material properties of the tread rubber: thermal conductivity, rubber density, Young's modulus, specific heat, roughness parameter of the rubber, and radii of spherical asperities of the rubber. The results from this study show the sensitivity of the magnitude of the friction coefficient to the rubber material properties. The friction coefficient has a direct relationship with the density of the rubber and has an inverse relationship with Young's modulus, specific heat, and roughness parameter. / Doctor of Philosophy / In order to decrease the number of deaths and injuries caused by driving on icy roads and increase the safety of the vehicle, it is important to improve the tire performance on ice. To this, understanding the effects of different tire and road parameters such as material properties of the rubber, loading condition, and temperature on the tire-ice performance is required. Tire parameters play a very important role in tire performance. Depending on the driving conditions for which a given tire is designed, its parameters must be chosen appropriately In this project, the effects of different tire and terrain parameters such as rubber material properties on tire performance on ice using an experimental and modeling approach have been studied. For the experimental part of this study, several tests were conducted for more than 30 tires with different material properties. The results of this study show what are the most important material properties of the rubber for designing a tire with the best performance on ice. For the modeling part of this study, a semi-analytical model was developed. The model was validated using collected experimental data and was used to predict the performance of the tire by having information about its material and physical properties. The developed model called ATIIM2.0 has several advantages. First, it is a unique model for a complete tire (not a rubber block) that can be used to predict the performance of the tire by using its material properties. In addition, this model can be connected to vehicle models to improve the performance of the vehicle in general. The model developed can be used to predict the temperature changes at the contact patch, the tire friction force, the areas of wet and dry regions, the height of the water film for different ice temperatures, different normal loads, etc. The results from this study coincide with the obtained results from the experiments.

Page generated in 0.0755 seconds