Spelling suggestions: "subject:"water main rehabilitation"" "subject:"later main rehabilitation""
1 |
Forecasting Water Main Failures in the City of Kingston Using Artificial Neural NetworksNishiyama, Michael 22 October 2013 (has links)
Water distribution utilities are responsible for supplying both clean and safe drinking water, while under constraints of operating at an efficient and acceptable performance level. The City of Kingston, Ontario is currently experiencing elevated costs to repair its aging buried water main assets. Utilities Kingston is opting for a more efficient and practical means of forecasting pipe breaks and the application of a predictive water main break models allows Utilities Kingston to forecast future pipe failures and plan accordingly.
The objective of this thesis is to develop an artificial neural network (ANN) model to forecast pipe breaks in the Kingston water distribution network. Data supplied by Utilities Kingston was used to develop the predictive ANN water main break model incorporating multiple variables including pipe age, diameter, length, and surrounding soil type. The constructed ANN model from historical break data was utilized to forecast pipe breaks for 1-year, 2-year, and 5-year planning periods. Simulated results were evaluated by statistical performance metrics, proving the overall model to be adequate for testing and forecasting. Predicted breaks were as follows, 33 breaks for 2011-2012, 22 breaks for 2012-2013 and 35 breaks for 2013-2016. Additionally, GIS plots were developed to highlight areas in need of potential rehabilitation for the distribution system. The goal of the model is to provide a practical means to assist in the management and development of Kingston’s pipe rehabilitation program, and to enable Utilities Kingston to reduce water main repair costs and to improve water quality at the customer's tap. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-10-21 15:30:10.288
|
Page generated in 0.1103 seconds