• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determinants of key drivers for potable water treatment cost in uMngeni Basin

Rangeti, Innocent 04 March 2015 (has links)
Submitted in fulfilment of the requirements of the degree of Master of Technology: Environmental Health, Durban University of Technology, 2014. / The study entailed the determination of key water quality parameters significantly influencing treatment cost in uMngeni Basin. Chemical dosage was used as a substitute for treatment cost as the study indicated that cost, in its monetary value, is influenced by market forces, demand and supply, which are both not directly linked to water quality. Chemical dosage is however, determined by the quality of water and thus provides a clear illustration of the effect of pollution on treatment cost. Three specific objectives were set in an effort to determine key water quality parameters influencing treatment costs in uMngeni Basin. The fourth objective was to develop a model for predicting chemical dosages. The first approach was analysis of temporal and spatial variability of water quality in relation to chemical dosage during production of potable water. The trends were explained in relation to river health status. For this purpose, time-series, box-plot, and the Seasonal-Kendal test were employed. The results showed that the quality of water significantly deteriorated from upstream to downstream in relation to algae, turbidity and Escherichia coli (E. coli). High mean range of E. coli (126-1319 colony count/100mL) and turbidity (2.7-38.7 NTU) observed indicate that the quality of water along the basin is not fit for human consumption as these parameters exceeded the target range stipulated in South Africa’s guidelines for domestic use. For water intended for drinking purpose, turbidity should be below 5 NTU, while zero E. coli count is expect in 100 mL. Among the six sampling stations considered along the uMngeni Basin, three dam outflows (Midmar, Nagle and Inanda) showed an improved quality compared with their respective inflow stations. This was expected and could be attributed to the retention and dilution effects. These natural processes help by providing a self-purification process, which ultimately reduces the treatment cost. While considering the importance of disseminating water quality information to the general public and non-technical stakeholders, the second objective of the study was to develop two water quality indices. These were; (1) Treatability Water Quality Index and (2) River Health Water Quality Index. The Treatability Water Quality Index was developed based on the Canadian Council Minister of Environment Water Quality Index (CCME-WQI). The technique is used to determine fitness of water against a set of assigned water quality resource objectives (guidelines). The calculated Harmonised Water Quality Resource Objectives (HWQRO) were used to compare the qualities of the raw water being abstracted at Nagle and Inanda Dam for the purpose of treatment. The results showed that Nagle Dam, which supplies Durban Heights, is significantly affected by E. coli (42% non-compliance), turbidity (20% non-compliance) and nitrate (18% non-compliance) levels. Wiggins Water Treatment Plant which abstracts from Inanda Dam has a problem of high algae (mean 4499 cell/mL), conductivity (mean 26.21 mS/m) and alkalinity (mean 62.66 mg/L) levels. The River Health Water Quality Index (RHWQI) was developed using the Weighted Geometric Mean (WQM) method. Eight parameters, namely, E. coli, dissolved oxygen, nitrate, ammonia, turbidity, alkalinity, electrical conductivity and pH were selected for indexing. Rating curves were drawn based on the target ranges as stipulated in South Africa’s guidelines for freshwater ecosystems. Five classes were used to describe the overall river health status. The results showed that the water is still acceptable for survival of freshwater animals. A comparison of the RHWQI scores (out of 100) depicted that dam inflow station (MDI(61.6), NDI(74.6) and IDI(63.8)) showed a relatively deteriorated quality as compared with their outflows (MDO(77.8), NDO(74.4) and IDO(80)). The third objective was to employ statistical analysis to determine key water quality parameters influencing chemical dosage at Durban Heights and Wiggins Water Treatment Plants. For each of the two treatment plants, treated water quality data-sets were analysed together with their respective raw water data-set. The rationale was to determine parameters showing concentration change due to treatment. The t-test was used to determine the significance of concentration change on each of the 23 parameters considered. Thereafter, the correlations between water quality parameters and the three chemicals used during treatment (polymer, chlorine and lime) were analysed. The results showed that the concentrations of physical parameters namely, algae, turbidity and total organic carbon at both treatment showed a significant statistical (p<0.05) reduction in concentration (R/Ro<0.95). This results implies that such parameters were key drivers for chemical dosage. From the results of the first three objectives, it is recommended that implementing measures to control physical parameter pollution sources, specifically sewage discharges and rainfall run-off from agricultural lands along the uMngeni Basin should assist in reducing the chemical dosage and ultimately cost. The fourth objective was to develop chemical dosage models for prediction purposes. This was achieved by employing a polynomial non-linear regression function on the XLStat 2014 program. The resultant models showed prediction power (R2) ranging from 0.18 (18%) up to 0.75 (75%). However, the study recommends a comparative study of the developed models with other modelling techniques.
2

Performance of a horizontal roughing filtration system for the pretreatment of greywater

Mtsweni, Sphesihle January 2016 (has links)
Submitted in fulfillment for the requirements of the degree of Master of Engineering, Department of Chemical Engineering, Durban University of Technology, KwaZulu-Natal, South Africa, 2016. / A large fraction of the world's population, around 1.1 billion people, do not have access to acceptable sources of water. In South Africa there is a growing pressure on the available freshwater resources. New sources of freshwater supply are becoming increasingly scarce, expensive or politically controversial. This has led to large scale interest in the application of water reclamation and reuse of domestic, mining and industrial wastewater as an alternative water supply sources. This is becoming critical to sustain development and economic growth in the Southern African region. This research aims at providing both social and scientific information on the importance of greywater reuse and recycling as an alternate source to aid water demand management under South African conditions. The approach to this research work was divided into two main thrusts: the first was to gain an understanding of the public attitudes towards the idea of reusing greywater that is usually perceived as wastewater which pose health concerns. The second was to provide an understanding of typical greywater quality in a peri-urban community in Durban, South Africa as well as investigate the suitability of a horizontal roughing filtration system in reducing pollutant strength of contaminants found in greywater for non-potable reuse applications. In order to achieve the central aim of this research study, the following objectives were considered: • Investigation of public perception and attitudes towards the reuse of greywater. • Determination of greywater quality in a peri-urban community in Durban South Africa. • Investigation of the performance of a horizontal roughing filtration system for the treatment of greywater collected from a peri-urban community in Durban, South Africa. It was important to have an understanding of public perception and attitudes towards the reuse of greywater because of the fact that the success of any reuse application depends on the acceptance of the public. The methodological approach for this aspect of the research work involved administering of structured questionnaires to residents within the community through field visits. The questionnaire addressed issues related to attitudes towards the reuse of greywater, perceived advantages related to the reuse of greywater and concerns related to public health issues regarding the reuse of greywater. The successful implementation of any greywater treatment process depends largely on its characteristics in terms of the pollutant strength. The methodological approach for this aspect of the research work involved physico- chemical characterization of the greywater collected from different sources within the households in the peri-urban community. Greywater samples were collected from the kitchen, shower and laundry within each of the households. This aspect of the research work was undertaken to gain an understanding of greywater quality from different sources within and between households. In order to achieve the third objective of this research work, a pilot plant horizontal roughing filtration system was designed and fabricated for the treatment of greywater. The system consisted of three compartments containing different sizes of gravel that served as the filter media. This was done in order to investigate the effect of varying filter media size on the performance of the horizontal roughing filtration system in treating greywater. The system had an adjustable manual valve used in varying the filtration rate. The impact of varying filtration rate on the performance of the horizontal roughing filtration system in treating greywater was also investigated. The main findings of this research were: • From the survey conducted, the percentage of the public willing to accept the reuse of greywater within the community was far higher than the percentage opposing its reuse. Concerns have often been expressed by the public that the reuse of greywater could pose possible adverse effects to public health. However, in this pilot study it was found that a higher percentage of respondents (>60%) disagree that the reuse of greywater could negatively impact on public health compared to less than 20% of the respondents that agree. An interesting finding of this study was that a greater percentage of the respondents were willing to have a dual water distribution system installed in their current place of residence. • The physico-chemical characterization of greywater from different sources within the households investigated indicated that, the quality of greywater varies considerably between all sources and from household to household. None of the households investigated produced the same quality of greywater. It was also found that greywater generated from the kitchen contains the most significant pollutants in terms of the physico-chemical parameters considered in this study compared to the other sources within the household. • The pilot plant horizontal roughing filtration system demonstrated its suitability for the treatment of greywater for non-potable reuse applications. It was observed that 90% turbidity and 63% Chemical Oxygen Demand reduction was achieved over the entire duration of operation of the horizontal roughing filter. It was also observed that the removal efficiency was significantly higher in the compartment with the smallest filter media size and the removal efficiency was significantly higher at lower filtration rates. It is therefore concluded from the investigation conducted in this research that the role of the public is a vital component in the development and implementation of any reuse system / application. It was found that there was a relatively high level of acceptance for the reuse of greywater among the respondents within the community where the study was conducted. The greywater characteristics results obtained from this investigation indicated the necessity of treatment prior to disposal in the environment. Also, a low BOD5/COD ratio of 0.24, which is significantly lower than 0.5, is an indication that the greywater generated from the community cannot be easily treated using biological treatment processes and/or technologies. The pilot horizontal roughing filtration system used for the treatment of greywater in this study demonstrated its suitability for the treatment of greywater for non-potable reuse applications such as irrigation, toilet flushing and washing activities. / M

Page generated in 0.0873 seconds