• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization Models for Iraq’s Water Allocation System

January 2019 (has links)
abstract: In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable river basin management for the Tigris and Euphrates Rivers in Iraq is essential. Applicable water resources allocation scenarios are important to minimize the potential future water crises in connection with water quality and quantity. The allocation of the available fresh water resources in addition to reclaimed water to different users in a sustainable manner is of the urgent necessities to maintain good water quantity and quality. In this dissertation, predictive water allocation optimization models were developed which can be used to easily identify good alternatives for water management that can then be discussed, debated, adjusted, and simulated in greater detail. This study provides guidance for decision makers in Iraq for potential future conditions, where water supplies are reduced, and demonstrates how it is feasible to adopt an efficient water allocation strategy with flexibility in providing equitable water resource allocation considering alternative resource. Using reclaimed water will help in reducing the potential negative environmental impacts of treated or/and partially treated wastewater discharges while increasing the potential uses of reclaimed water for agriculture and other applications. Using reclaimed water for irrigation is logical and efficient to enhance the economy of farmers and the environment while providing a diversity of crops, especially since most of Iraq’s built or under construction wastewater treatment plants are located in or adjacent to agricultural lands. Adopting an optimization modelling approach can assist decision makers, ensuring their decisions will benefit the economy by incorporating global experiences to control water allocations in Iraq especially considering diminished water supplies. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2019
2

Managed artificial aquifer recharge and hydrological studies in the Walla Walla Basin to improve river and aquifer conditions

Petrides Jimenez, Aristides Crisostomos 13 June 2012 (has links)
This research project focuses on the Walla Walla River Basin located on the east side of the states of Oregon and Washington, USA. With the support and collaboration of the Walla Walla Basin Watershed Council, this work embraces four research topics. The first topic includes the feasibility study of artificial aquifer recharge in the Walla Walla Basin. Through development and application of a regional hydrological model, a methodology for evaluating locations of artificial aquifer recharge is presented with a test case. The second research topic evaluates the recharge rates observed from pilot test studies of artificial aquifer recharge. Scale dependence of recharge rates should be considered when excessive induced groundwater mounding forms beneath the infiltrating basins. The third topic utilizes groundwater tracers and simulation models to evaluate the hydraulic connection of springs to infiltrating basins of artificial aquifer recharge. Finally, the fourth topic as a proof of a technique, utilizes distributed temperature sensing technology with a pair of black and white coated fiber optic cables to estimate the effective exposure to solar radiation over the Walla Walla River. / Graduation date: 2013

Page generated in 0.1371 seconds