• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 13
  • 12
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A history of the ports of Queensland 1859-1939: A study in Australian economic nationalism

Lewis, Glen Unknown Date (has links)
No description available.
12

A history of the ports of Queensland 1859-1939: A study in Australian economic nationalism

Lewis, Glen Unknown Date (has links)
No description available.
13

A history of the ports of Queensland 1859-1939: A study in Australian economic nationalism

Lewis, Glen Unknown Date (has links)
No description available.
14

Characterizing ballast water as a vector for nonindigenous zooplankton transport

Humphrey, Donald B. 11 1900 (has links)
The global movement of aquatic non-indigenous species can have severe ecological, environmental and economic impacts emphasizing the need to identify potential invaders and transport pathways. Initial transport is arguably the most important stage of the invasion process owing to its role in selectively determining potential invasion candidates. This study characterizes a well defined human-mediated dispersal mechanism, ballast water transport, as a vector for the introduction of non-indigenous zooplankton. Ballast water exchange in the open ocean is the most widely adopted practice for reducing the threat of aquatic invasions and is mandatory for most foreign vessels intending to release ballast in Canadian waters. Ships entering Canadian ports are categorized into the following three shipping classes based on current regulations: overseas vessels carrying exchanged ballast water, intra-coastal vessels carrying exchanged ballast water or intra-coastal vessels carrying un-exchanged ballast water. This study characterizes zooplankton communities associated with each of these shipping classes sampled from ports on Canada’s Pacific coast, Atlantic coast and the Great Lakes Basin. Ballast water samples were collected and analyzed from 77 vessels between 2006 - 2007. The ballast water environment was found to be diverse, with over 193 zooplankton taxa, 71 of which were non-indigenous to their receiving environments. Intracoastal vessels containing un-exchanged coastal water transported the greatest density of non-indigenous zooplankton into Canadian ports. Total zooplankton density was found to be negatively correlated with ballast water age The absence of mandatory ballast water exchange and the younger ballast water age of coastal un-exchanged vessels is likely responsible for the higher density of non-indigenous zooplankton in intracoastal un-exchanged vessels. Propagule pressure, invasion history and environmental suitability are all useful in evaluating invasion potential and all suggest that intracoastal un-exchanged vessels pose the greatest invasion threat to Canadian aquatic ecosystems. In conclusion, although the risk of primary introductions from overseas ports may have been reduced through open-ocean exchange of ballast water, secondary introductions from previously invaded ports in North America may be the primary threat to Canadian aquatic ecosystems via this transport vector. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
15

Characterization of molecule and particle transport through nanoscale conduits

Alibakhshi, Mohammad Amin 05 November 2016 (has links)
Nanofluidic devices have been of great interest due to their applications in variety of fields, including energy conversion and storage, water desalination, biological and chemical separations, and lab-on-a-chip devices. Although these applications cross the boundaries of many different disciplines, they all share the demand for understanding transport in nanoscale conduits. In this thesis, different elusive aspects of molecule and particle transport through nanofluidic conduits are investigated, including liquid and ion transport in nanochannels, diffusion- and reaction-governed enzyme transport in nanofluidic channels, and finally translocation of nanobeads through nanopores. Liquid or solvent transport through nanoconfinements is an essential yet barely characterized component of any nanofluidic systems. In the first chapter, water transport through single hydrophilic nanochannels with heights down to 7 nm is experimentally investigated using a new measurement technique. This technique has been developed based on the capillary flow and a novel hybrid nanochannel design and is capable of characterizing flow in both single nanoconduits as well as nanoporous media. The presence of a 0.7 nm thick hydration layer on hydrophilic surfaces and its effect on increasing the hydraulic resistance of the nanochannels is verified. Next, ion transport in a new class of nanofluidic rectifiers is theoretically and experimentally investigated. These so called nanofluidic diodes are nanochannels with asymmetric geometries which preferentially allow ion transport in one direction. A nondimensional number as a function of electrolyte concentration, nanochannel dimensions, and surface charge is derived that summarizes the rectification behavior of this system. In the fourth chapter, diffusion- and reaction-governed enzyme transport in nanofluidic channels is studied and the theoretical background necessary for understanding enzymatic activity in nanofluidic channels is presented. A simple analytical expression that describes different reaction kinetics is derived and confirmed against available experimental data of reaction of Trypsin with Poly-L-lysine. Finally, in the last chapter translocation of nanobeads through synthetic nanopores is experimentally investigated using resistive pulse sensing. The emphasis is placed on elucidating the effect of nanobead size on the translocation current and time. The key goals pursued in this study are multiplex detection of different nanobead sizes in a mixture of nanobeads as well as determining the concentration of each component. This problem other than its fundamental significance paves the way for developing new biosensing mechanisms for detection of biomolecules. This thesis further explores the molecule and particle transport in nanoscale conduits and serves for better characterization and development of nanofluidic devices for various applications.
16

Finite-Difference Model of Cell Dehydration During Cryopreservation

Carnevale, Kevin A. 30 April 2004 (has links)
A numerical model for describing the kinetics of intracellular water transport during cryopreservation was developed. As ice is formed outside the cell, depleting the extracellular liquid of water, the cell will experience an osmotic pressure difference across its membrane, which causes cell dehydration and concomitant shrinkage. Although Mazur (1963) has previously modeled this phenomenon as a two-compartment system with membrane limited transport, the assumption of well-mixed compartments breaks down at large Biot numbers. Therefore, we have developed a numerical solution to this moving-boundary problem, including diffusive transport in the intracellular liquid, in addition to the osmotically driven membrane flux. Our model uses a modified Crank-Nicolson scheme with a non-uniform Eulerian-Lagrangian grid, and is able to reproduce predictions from Mazurs model at low Biot numbers, while generating novel predictions at high Biot numbers. Given that cell damage may result from excessive water loss, our model can be used to predict freezing methods that minimize the probability of cell injury during the cryopreservation process.
17

Numerical investigation of the structure effects on water transportation in PEMFC gas diffusion layers using X-ray tomography based Lattice Boltzmann method

Jinuntuya, Fontip January 2015 (has links)
The excessive presence of liquid water in a gas diffusion layer (GDL) hinders the access of reactant gases to the active sites of the catalyst layer leading to decreased performance of a polymer electrolyte membrane fuel cell (PEMFC). Therefore, GDLs are usually treated with a hydrophobic agent to render their fibres more hydrophobic in order to facilitate gas transport and water removal. Numerous studies have been conducted to investigate water transport in PEMFCs in recent years; however, the behaviour of liquid water in a GDL at a pore-level is poorly understood. Macroscopic models fail to incorporate the influence of the structural morphology of GDLs on liquid water transport behaviour. Experimental methods are not conducive towards a good understanding at a microscopic level because of the diminutive size of the GDLs porous structure. Alternatively, the Lattice Boltzmann (LB) method has gathered interest as it is found to be particularly useful in fluid flow simulations in porous media due to its capability to incorporate the complex boundaries of actual GDL structures. To date, most studies on fluid transport in GDLs integrated artificial structures generated by stochastic simulation techniques to the LB models. The stochastic-based model, however, does not represent closely the microscopic features of the actual GDL as manufactured. In addition, comparison of liquid water transport behaviour in different GDL structures using the LB method is rare since only a single GDL material has been utilised in most of those studies. This thesis aims to develop our understanding of liquid water transport behaviour in GDLs with morphologically different structures under varying wettability conditions based on the LB method and the X-ray computed tomography (XCT) technique. GDLs with paper and felt structures were reconstructed into 3D digital volumetric models via the XCT process. The digital models were then incorporated into a LB solver to model water saturation distribution through the GDL domains. The GDL wettability was also altered so that the effect on liquid water behaviour in the GDL could be examined. This project is divided into three main sections. In the sensitivity analysis, the effect of image resolution on gas permeability through the X-ray reconstructed GDL was carried out using a single-phase LB model. It was found that the resolution variation could significantly affect the resulting gas permeability in both principal and off-principal directions, as well as computational time. An optimum resolution, however, exists at 2.72 μm/pixel, which consumed 400 times less computational time with less than 8% difference in the resulting permeability compared to the base resolution. This study also served as a guideline for selecting a resolution for generating the XCT images of the GDLs which were utilised in the following studies. In the structure analysis, the structures of the paper and felt GDLs were generated using the XCT and the key properties of each GDL, including thickness, porosity, permeability and tortuosity, were characterised. The thickness and the through-plane porosity distributions of each GDL were examined based on the tomography images. The resulting local through-plane porosity distributions were then used to calculate through-plane permeability and tortuosity distributions using an analytical model available in the literature. This study revealed the heterogeneity of the GDLs and how the heterogeneous nature of the GDL structures affects others properties of the GDLs. In this study, the absolute through-plane permeability and tortuosity of the X-ray-reconstructed GDL samples were also characterised using the single-phase LB model. The results from the two models were then compared and validated against data in the literature. In the water transport analysis, the two-phase LB model was employed to examine the effects of GDL structures on the behaviour of liquid water in the GDLs, including invasion patterns, saturation distribution and breakthrough behaviour under varying GDL wettability conditions. It was found that wettability was responsible for invasion patterns and water saturation levels whilst the GDL structure was mostly responsible for breakthrough occurrence and saturation distribution. It was observed that water travelled with stable displacement saturating all pores in hydrophilic GDLs, while it travelled with capillary fingering causing decreased saturation in hydrophobic GDLs, about 50% in the highly hydrophobic cases. The GDL structure was found to play a key role in breakthrough behaviour in the hydrophilic GDL as it was seen that the through-plane fibres in the felt structure and the through-plane binders in the paper structure encouraged water removal from the GDL in the thickness direction. Conversely, the GDL structure was found to have negligible influence on breakthrough in the hydrophobic GDL. Each GDL structure, however, contributed to a distinct difference in water distribution in the GDL with hydrophobic wettability. The work presented in this thesis contributes to the understanding of liquid water transport behaviour in the GDLs under the combined effects of the GDL structures and wettability conditions, which is essential for the development of effective PEMFC water management and the design of future GDL materials.
18

Surface tension driven water pumping : a bio inspired passive water pump

Fraser, Justin 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The purpose of this study is to construct and test a surface tension driven water pump. The surface tension driven water pump is a passive water pump which uses a similar mechanism to that of trees to pump water. This study was conducted at the Department of Mechanical and Mechatronic Engineering at the University of Stellenbosch. For the study an extensive literature survey was done encompassing aspects such as water properties, surface tension (basic principles, capillary forces, temperature and contaminant effects, wettability), bubble formation (nucleation theory and tensile strength of water) and, finally water and mineral transport in trees (plant structures and mechanisms, limiting factors, misconceptions and organic substance transport). Previous work by botanists who demonstrate the transpiration mechanism needed for water transport in trees was also considered. The study further required the development of a theoretical thermal-hydraulic model to simulate the pumping performance for the surface tension driven water pump. The developed water pump was also experimentally tested with particular focus on design improvement, pumping performance, pump behaviour, potential pumping head as well as water collection capability. The experimental data was statistically analysed by multi-linear regression. Both the experimental data and statically generated predictions were compared to the theoretical thermal-hydraulic model. The results show that a working surface tension driven pump was constructed. Evaporation rates of up to 400 mL/hr.m2 were obtained, with pumping head heights reaching up to 1.8 m and a maximum pump functional lifespan of 13 days. The results further suggest that there is a good correlation between the various statistical fits and the experimental data. The developed theoretical thermal-hydraulic model was also found to be in good agreement with the experimental results. A sensitivity analysis of the theoretical and statistical models showed that the statistical models fairs poorly under extrapolation. Additionally, the mechanistic causes of pump failure as well as the effect of heat and pumping head on water pumping performance were identified. Thereafter, the water collection efficiency was established to be 98% on average. Further testing revealed that the pumping performance of larger area or multiple grouped “leaves” are less accurately predicted with the theoretical model than a single “leaf”. In conclusion, the results provide some support that the surface tension driven pump may be used as a water transport system in an artificial photosynthesis project, if the functional lifespan of the pump can be greatly improved. It is recommended that a more rigid hydrophilic material be used in the “leaf” interface and that multiple narrower conduits be used instead of a single larger pipe. Additional future work may include the development of pit-like structures to prevent air spreading throughout the system as well as a simple mechanism for evaporative control. / AFRIKAANSE OPSOMMING: Die doel van hierdie ondersoek is om 'n oppervlakspanning-aangedrewe waterpomp te bou en te toets. Die oppervlakspanning-aangedrewe waterpomp is ‘n passiewe waterpomp wat gebruik maak van ‘n meganisme soortgelyke aan dié van bome om water te pomp. Hierdie ondersoek is by die Departement Meganiese en Megatroniese Ingenieurswese by die Universiteit van Stellenbosch uitgevoer. Vir die ondersoek is 'n uitgebreide literatuurstudie gedoen wat aspekte soos water eienskappe, oppervlakspanning (basiese beginsels, kapillêre kragte, die uitwerking van temperatuur, onsuiwerhede asook benatbaarheid), lugborrelvorming (kernvormingsteorie en die treksterkte van water) en uiteindelik water- en mineraalvervoer in bome (plantstrukture en -meganismes, beperkende faktore, wanpersepsies en die vervoer van organiese stowwe) insluit. Vorige navoring deur plantkundiges, wat die watervervoermeganismes in bome demonstreer, is ook in ag geneem. Die ondersoek het die ontwikkeling van 'n teoretiese termies-hidrouliese model ingesluit, wat gebruik is om die oppervlakspanning-aangedrewe waterpomp se werking te voorspel. Die waterpomp is ook eksperimenteel getoets met die fokus op ontwerpverbetering, pompwerkverrigting, pompwerking, potensiële pompopvoerdrukhoogte sowel as die waterversamelingsvermoë. Die eksperimentele data is statisties ontleed deur middel van meervoudige liniêre regressie. Beide die eksperimentele data en statisties-gegenereerde voorspellings is vergelyk met die teoretiese termies-hidrouliese-model. Die resultate toon dat 'n werkende oppervlakspanning-aangedrewe pomp gebou is. ‘n Verdampingstempo van tot 400 mL/hr.m2, pompopvoerdrukhoogte van tot 1.8m en 'n maksimum funksionele pompleeftyd van 13 dae is bereik. Die resultate dui verder daarop dat daar 'n goeie korrelasie tussen die verskillende statistiese lynpassings en die eksperimentele data is. Die teoretiese termies-hidrouliese-model wat ontwikkel is, toon 'n goeie ooreenkoms met die eksperimentele resultate. 'n Sensitiwiteitsanalise van die teoretiese en statistiese modelle het getoon dat die statistiese modelle swak voorspellings maak as geëkstrapoleerde data gebruik word. Verder is die meganismes wat pompweiering veroorsaak, die effek van hitte asook die effek van pompopvoerdrukhoogte op die pomp se werkverrigting geïdentifiseer. Daarna is die doeltreffendheid van waterversamelingsvermoë vir die waterpomp vasgestel op gemiddeld 98%. Verdere toetse het getoon dat die pompwerkverrigting van groter gegroepeerde "blare" minder akkuraat met die teoretiese model voorspel word as vir 'n enkele "blaar". Ten slotte: Die resultate toon dat die oppervlakspanning-aangedrewe waterpomp as 'n water vervoer stelsel gebruik kan word in 'n kunsmatige fotosinteseprojek, indien die funksionele leeftyd van die pomp verbeter kan word. Dit word aanbeveel dat 'n sterker hidrofiliese materiaal in die "blaar"-koppelvlak gebruik word en dat verskeie nouer leipype gebruik word in plaas van 'n enkele groter pyp. Bykomende toekomstige werk kan die ontwikkeling van put-agtige strukture insluit wat die verspeiding van lug deur die hele stelsel voorkom, sowel as 'n eenvoudige meganisme wat die verdampingstempo beheer.
19

Modelling and Experimental Investigation of the Dynamics in Polymer Electrolyte Fuel Cells

Wiezell, Katarina January 2009 (has links)
<p>In polymer electrolyte fuel cells (PEFC) chemical energy, in for example hydrogen, is converted by an electrochemical process into electrical energy. The PEFC has a working temperature generally below 100 °C. Under these conditions water management and transport of oxygen to the cathode are the parameters limiting the performance of the PEFC.</p><p>The purpose of this thesis was to better understand the complex processes in different parts of the PEFC. The rate-limiting processes in the cathode were studied using pure oxygen while varying oxygen pressure and humidity. Mass-transport limitations in the gas diffusion layer using oxygen diluted in nitrogen or helium was also studied. A large capacitive loop was seen at 1-10 Hz with 5-20 % oxygen. When nitrogen was changed to helium, which has a higher binary diffusion coefficient, the loop decreased and shifted to a higher frequency.</p><p>Steady-state and electrochemical impedance spectroscopy (EIS) models have been developed that accounts for water transport in the membrane and the influence of water on the anode. Due to water drag, the membrane resistance changes with current density. This gives rise to a low frequency loop in the complex plane plot. The loop appeared at a frequency of around 0.1 Hz and varied with <em>D</em>/<em>L<sub>m</sub></em><sup>2</sup>, where <em>D</em> is the water diffusion coefficient and <em>L<sub>m</sub></em> is the membrane thickness. The EIS model for the hydrogen electrode gave three to four semicircles in the complex plane plot when taking the influence of water concentration on the anode conductivity and kinetics into account. The high-frequency semicircle is attributed to the Volmer reaction, the medium-frequency semicircle to the pseudocapacitance resulting from the adsorbed hydrogen, and the low-frequency semicircles to variations in electrode performance with water concentration. These low-frequency semicircles appear in a frequency range overlapping with the low-frequency semicircles from the water transport in the membrane. The effects of current density and membrane thickness were studied experimentally. An expected shift in frequency, when varying the membrane thickness was seen. This shift confirms the theory that the low-frequency loop is connected to the water transport in the membrane.</p>
20

Computational analysis of multi-phase flow in porous media with application to fuel cells

Akhgar, Alireza 21 December 2016 (has links)
Understanding how the water produced in an operating polymer electrolyte membrane fuel cell (PEMFC) is transported in cathode catalyst layer (CCL) is crucial to improving performance and efficiency. In this thesis, a multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is employed to simulate the high density ratio, multiphase water transport in in the CCL. The three-dimensional structure of the catalyst layer is reconstructed based on experimental data acquired with a dual beam scanning electron microscope/focused ion beam system and a stochastic method using lower order statistical functions (e.g. porosity and two point correlation functions). Simulations of the water transport dynamics are performed to examine the effect of a range of physical parameters: wettability, viscosity ratio, pressure gradient, and surface tension. The water penetration patterns in the catalyst layers reveal a complex fingering process and transition of the water transport pattern from a capillary fingering regime to a stable displacement regime is observed when the wettability potential of the catalyst layer changes. The second part of the analysis focuses on quantifying the impact of liquid water distribution and accumulation in the catalyst layer on effective transport properties by coupling two numerical methods: the two-phase LBM is used to determine equilibrium liquid water distribution, and then a finite volume-based pore-scale model (FV-PSM) is used to compute transport of reactant and charged species in the CL accounting for the impact of liquid water saturation .The simulated results elucidate and quantify the significant impact of liquid water on the effective oxygen and water vapor diffusivity, and thermal conductivity in CLs. / Graduate

Page generated in 0.0962 seconds