• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wave modeling at the mouth of the Columbia River

Kassem, Sarah 05 September 2012 (has links)
As the second largest river in the U.S., the entrance to the Columbia River is home to some of the most extreme wave conditions on the Pacific Coast. Winter storms commonly generate waves 6-8 m in height, which in combination with strong tidal currents, can produce dangerous navigation conditions. To improve understanding of the wave dynamics in this complex setting, the SWAN model is applied; 2 hindcasts are conducted and an operations forecast is developed. The model is forced with offshore wave heights obtained from a buoy located in 134 m water depth (for the hindcasts) and a specialized WaveWatchIII forecast (for the forecast). In both cases tidal currents are obtained from SELFE, a circulation model of the Columbia River. The hindcasts are validated through measurements obtained from an inshore buoy located in 25 m water depth, a 4-week field experiment and remote sensing methods. The model performs best at the location of the buoy, with a normalized root-mean-squared error (NRMSE) of 11%, primarily because it is outside the area of strong tidal currents. Within the river mouth, the model is able to predict the changes in the wave field due to currents, but its performance is limited by errors in velocity estimates and strong shears in the tidal current profile. From the modeling work, it is evident that wave transformations at the mouth of the river are dominated by the tidal currents. The forecast has been operational since August 2011 and provides 45-hours of predictive wave information. In comparison with measured wave heights at the buoy, the forecast performs well, with a NRMSE of 16%. The majority of errors are caused by errors in the input conditions, since they themselves are forecasted. Additional errors arise from phase-resolved properties in the wave field that the model is unable to produce; these errors are also present in the hindcasts. Despite the limitations, this forecast provides valuable information to bar pilots since it includes the effects of the tidal currents. / Graduation date: 2013
2

An efficient high-performance computing based three-dimensional numerical wave basin model for the design of fluid-structure interaction experiments

Nimmala, Seshu B. 11 October 2010 (has links)
Fluid-structure interaction (FSI) is an interesting and challenging interdisciplinary area comprised of fields such as engineering- fluids/structures/solids, computational science, and mathematics. FSI has several practical engineering applications such as the design of coastal infrastructure (such as bridges, levees) subjected to harsh environments from natural forces such as tsunamis, storm surges, etc. Development of accurate input conditions to more detailed and complex models involving flexible structures in a fluid domain is an important requirement for the solution of such problems. FSI researchers often employ methods that use results from physical wave basin experiments to assess the wave forces on structures. These experiments, while closer to the physical phenomena, often tend to be time-consuming and expensive. Experiments are also not easily accessible for conducting parametric studies. Alternatively, numerical models when developed with similar capabilities will complement the experiments very well because of the lower costs and the ability to study phenomena that are not feasible in the laboratory. This dissertation is aimed at contributing to the solution of a significant component of the FSI problem with respect to engineering applications, covering accurate input to detailed models and a numerical wave basin to complement large-scale laboratory experiments. To this end, this work contains a description of a three-dimensional numerical wave tank (3D-NWT), its enhancements including the piston wavemaker for generation of waves such as solitary, periodic, and focused waves, and validation using large-scale experiments in the 3D wave basin at Oregon State University. Performing simulations involving fluid dynamics is computational-intensive and the complexity is magnified by the presence of the flexible structure(s) in the fluid domain. The models are also required to take care of large-scale domains such as a wave basin in order to be applicable to practical problems. Therefore, undertaking these efforts requires access to high-performance computing (HPC) platforms and development of parallel codes. With these objectives in mind, parallelization of the 3D-NWT is carried out and discussed in this dissertation. / Graduation date: 2011

Page generated in 0.1935 seconds