• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Residence Time on Microbial and Chemical Quality of Reclaimed Water In Urban Infrastructures

Ajibode, Oluyomi Marriet January 2012 (has links)
The goal of this study was to assess the effect of residence time on the chemical and microbial quality of reclaimed water in two distribution systems located in southern Arizona. Utility A produced Class A water and utilized chlorine as a means of disinfection whereas Utility B produced Class A+ water and utilized UV radiation as a means of disinfection. Water-based pathogens were consistently detected in both distribution systems beyond the point of compliance, while microbial indicators like Escherichia coli was only detected in Utility B suggesting that treatment eliminated waterborne pathogens. Heterotrophic plate concentrations in samples from both utilities initially increased rapidly with increased distance from the point-of-compliance and were as high as 10⁹ CFU/100ml. Regardless of the initial level of treatment, the microbial quality deteriorated with increased residence time in the distribution systems. The second study was designed to evaluate the effect of reclaimed water storage on microbial and chemical quality of two classes of reclaimed water (Class A and Class A+). In Class A water, nitrification was observed during both field scale trials resulting in concentrations greater than 10mg/L while nitrification was not observed in Class A+. Chlorine residuals rapidly decreased within 48hours of storage. HPC concentration were as high as 10⁷ - 10⁸ /100ml. In both field scale trials, there was no observed growth of HPC during storage and waterborne indicator bacteria were rarely detected, and if detected, only at low concentrations. Based on this data, deterioration of microbial water quality during storage is minimal.

Page generated in 0.0749 seconds