• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • Tagged with
  • 38
  • 38
  • 18
  • 15
  • 14
  • 14
  • 13
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modification of the SWAT Model to Simulate Hydrologic Processes in a Karst-influenced Watershed

Yactayo, Guido Andres 14 September 2009 (has links)
In the United States, karst ecosystems cover approximately 20 percent of the country and karst aquifers provide 40 percent of the water used for drinking. In karst-influenced watersheds, karst features such as sinkholes and sinking streams act as rapid pathways for carrying water and pollutants into streams and groundwater. Human activities on karst landscapes can present some special problems such as alterations to hydrologic regime, contamination of groundwater, ground subsidence, and damage to cave ecosystems. Modeling a karst-influenced watershed can provide a better understanding of the interactions between surface and ground water and how water quality is affected by human activities. Several models were evaluated to determine their ability to model both discharge and nutrient transport in karst watersheds. The Soil Water Assessment Tool (SWAT) model was found to be appropriate due to its capability to represent almost all of the hydrological processes, its user-friendliness, and its ability to generate most of the parameters from available data. Moreover, SWAT can represent nitrogen transformations and transport processes and calculate nitrogen loadings, which is critical for karst watersheds. While it has been widely used and found to be an appropriate prediction tool, it does not explicitly include the capacity to represent specific features characteristic of karst-influenced basins. Baffaut and Benson (2008) modified the SWAT 2005 code to simulate faster aquifer recharge in karst environments, and this version was further modified here in the SWAT-Karst to represent karst environments at the HRU scale. A new parameter sink allows simulating the hydrology and nitrate transport in a sinkhole representing its unique landuse and soil characteristics, and a new parameter ss partitions nitrate transported with water that is lost from sinking streams. The SWAT-KARST model was used to simulate discharge and nitrogen loadings within the Opequon Creek karst-influenced watershed, located in the Potomac and Shenandoah River basin in Virginia and West Virginia. In the Opequon Creek watershed, SWAT-karst using the HRU to represent sinkholes had a more notable impact in the watershed hydrology than SWAT-B&B using a pond to represent sinkholes. Results of statistical evaluation show that SWAT-karst and the Baffaut and Benson (2008) version performed better than SWAT in predicting streamflow in a karst-influenced watershed. Although SWAT-karst showed almost the same performance as SWAT-B&B, SWAT-karst model offers the flexibility to represent the unique relationship between surface and ground water in karst features in an HRU. Using an HRU to represent sinkholes can depict the associated variability of a karst landscape. The new variables sink and ss provide a mechanism to represent the nutrient transport through sinkholes and sinking streams. Sensitivity analysis showed that SWAT-karst was sensitive to the new parameter sink which can be used for model calibration and to represent water recharge and nutrient transport to aquifers outside the watershed boundary. / Master of Science
12

Water Allocation Challenges in Rural River Basins: A Case Study from the Walawe River Basin,Sri Lanka

Weragala, D. K. Neelanga 01 May 2010 (has links)
This dissertation evaluates the water allocation challenges in the rural river basins of the developing world, where demands are growing and the supply is limited. While many of these basins have yet to reach the state of closure, their water users are already experiencing water shortages. Agricultural crop production in rural river basins of the developing world plays a major role in ensuring food security. However, irrigation as the major water consumer in these basins has low water use efficiency. As water scarcity grows, the need to maximize economic gains by reallocating water to more efficient uses becomes important. Water allocation decisions must be made considering the social economic and environmental conditions of the developing world. The purpose of this dissertation is to identify water allocation strategies that satisfy the above conditions, in the example of the Walawe River basin in Sri Lanka. In this dissertation three manuscripts are presented. The first manuscript takes a broad view of the current water allocation situation. The second manuscript develops a methodology to analyze water allocation under a priority-based approach with the use of network flow simulation techniques. The third manuscript analyzes the water supply-demand situation in the basin under future climatic conditions. The major findings of this study suggest that: (1) while up to 44% of water is still available for use, seasonality of inflows, poor water management, physical infrastructure deficiencies, and other socio-economic factors contribute to the irrigation deficits in the Walawe basin; (2) prioritizing irrigation over hydropower generation increases supply reliability by 21% in the Walawe irrigation system IRR 1. The corresponding annual loss in power output in less than 0.5%. Prioritizing the left bank irrigation area in system IRR 2 increases the economic gains from crop yields by US $1 million annually; (3) an increase of water use efficiency between 30-50% in agriculture can mitigate all water deficits in agriculture, urban water supply and industrial sectors; (4) the predicted 25% increase of rainfall over the Walawe basin in the 2050's allows for 43% increase in hydropower generation (with changes to power generation mode) and 3-16 % reduction in irrigation requirements; (5) network flow simulation techniques can be successfully used to evaluate different demand management strategies and improvements to the priority-based water allocation method.
13

Hydrologic modeling of reconstructed watersheds using a system dynamics approach

Jutla, Antarpreet Singh 16 January 2006
The mining of oil sands in the sub-humid region of Northern Alberta, Canada causes large-scale landscape disturbance, which subsequently requires extensive reclamation to re-establish the surface and subsurface hydrology. The reconstructed watersheds examined in this study are located at the Syncrude Canada Limited mine site, 40 km North of Fort McMurray, Alberta, Canada. The three experimental reconstructed watersheds, with nominal soil thicknesses of 1.0 m, 0.50 m and 0.35 m comprised a thin layer of peat (15-20 cm) over varying thicknesses of secondary (till) soil, have been constructed to cover saline sodic overburden and to provide sufficient moisture storage for vegetation while minimizing surface runoff and deep percolation to the underlying shale overburden. In order to replicate the hydrological behavior, assess the sustainability, and trace the evolution over time of the reclaimed watersheds, a suitable modeling tool is needed.</p> <p>In this research, a model is developed using the system dynamics approach to simulate the hydrological processes in the three experimental reconstructed watersheds and to assess their ability to provide the various watershed functions. The model simulates the vertical and lateral water movement, surface runoff and evapotranspiration within each watershed. Actual evapotranspiration, which plays an important role in the hydrology of the Canadian semi-arid regions, is simulated using an indexed soil moisture method. The movement of water within the various soil layers of the cover is based on parametric relationships in conjunction with conceptual infiltration models. The feedback relationships among the various dynamic hydrologic processes in the watershed are captured in the developed System Dynamic Watershed Model (SDWM). </p> <p>Most hydrological models are evaluated using runoff as the determining criterion for model calibration and validation, while accounting for the movement of moisture in the soil as a water loss. Since one of the primary objectives of a reconstructed watershed is to maintain the natural flora and fauna, it is important to recognize that soil moisture plays an important role in assessing the performance of the reconstructed watersheds. In turn, soil moisture becomes an influential factor for quantifying the health of the reconstructed watershed. The developed model has been calibrated and validated with data for two years (2001-2002), upholding the sensitive relationship between soil moisture and runoff. Accurate calibration of the model based on simulations of soil moisture in the various soil layers improves its overall performance. The model was subsequently used to simulate the three sub-watersheds for five years, with changing the calibrated model parameters to use them as indicators of watershed evolution. The simulated results were compared with the observed values. </p> <p>The results of the study illustrate that all three watersheds are still evolving. Failure to identify a unique parameter set for simulating the watershed response supports the hypothesis of watershed evolution. Soil moisture exchange between the till and peat layers changed with time in all of the watersheds. There was also a modest change in the water movement from the till to shale layers in each of the sub-watersheds. Vegetation is increasing in all of watersheds although there is an indication that one of the sub-watersheds may be sustaining deep rooted vegetation. The results demonstrate the successful application of the system dynamics approach and the developed model in simulating the hydrology of reconstructed watersheds and the potential for using this approach in assessing complex hydrologic systems.
14

Hydrologic modeling of reconstructed watersheds using a system dynamics approach

Jutla, Antarpreet Singh 16 January 2006 (has links)
The mining of oil sands in the sub-humid region of Northern Alberta, Canada causes large-scale landscape disturbance, which subsequently requires extensive reclamation to re-establish the surface and subsurface hydrology. The reconstructed watersheds examined in this study are located at the Syncrude Canada Limited mine site, 40 km North of Fort McMurray, Alberta, Canada. The three experimental reconstructed watersheds, with nominal soil thicknesses of 1.0 m, 0.50 m and 0.35 m comprised a thin layer of peat (15-20 cm) over varying thicknesses of secondary (till) soil, have been constructed to cover saline sodic overburden and to provide sufficient moisture storage for vegetation while minimizing surface runoff and deep percolation to the underlying shale overburden. In order to replicate the hydrological behavior, assess the sustainability, and trace the evolution over time of the reclaimed watersheds, a suitable modeling tool is needed.</p> <p>In this research, a model is developed using the system dynamics approach to simulate the hydrological processes in the three experimental reconstructed watersheds and to assess their ability to provide the various watershed functions. The model simulates the vertical and lateral water movement, surface runoff and evapotranspiration within each watershed. Actual evapotranspiration, which plays an important role in the hydrology of the Canadian semi-arid regions, is simulated using an indexed soil moisture method. The movement of water within the various soil layers of the cover is based on parametric relationships in conjunction with conceptual infiltration models. The feedback relationships among the various dynamic hydrologic processes in the watershed are captured in the developed System Dynamic Watershed Model (SDWM). </p> <p>Most hydrological models are evaluated using runoff as the determining criterion for model calibration and validation, while accounting for the movement of moisture in the soil as a water loss. Since one of the primary objectives of a reconstructed watershed is to maintain the natural flora and fauna, it is important to recognize that soil moisture plays an important role in assessing the performance of the reconstructed watersheds. In turn, soil moisture becomes an influential factor for quantifying the health of the reconstructed watershed. The developed model has been calibrated and validated with data for two years (2001-2002), upholding the sensitive relationship between soil moisture and runoff. Accurate calibration of the model based on simulations of soil moisture in the various soil layers improves its overall performance. The model was subsequently used to simulate the three sub-watersheds for five years, with changing the calibrated model parameters to use them as indicators of watershed evolution. The simulated results were compared with the observed values. </p> <p>The results of the study illustrate that all three watersheds are still evolving. Failure to identify a unique parameter set for simulating the watershed response supports the hypothesis of watershed evolution. Soil moisture exchange between the till and peat layers changed with time in all of the watersheds. There was also a modest change in the water movement from the till to shale layers in each of the sub-watersheds. Vegetation is increasing in all of watersheds although there is an indication that one of the sub-watersheds may be sustaining deep rooted vegetation. The results demonstrate the successful application of the system dynamics approach and the developed model in simulating the hydrology of reconstructed watersheds and the potential for using this approach in assessing complex hydrologic systems.
15

A water quality assessment of the import of turfgrass sod grown with composted dairy manure into a suburban watershed

Richards, Chad Edward 17 February 2005 (has links)
Concentrated animal feeding operations (CAFOs) have caused water quality concerns in many rural watersheds, sometimes forcing the State of Texas to conduct Total Maximum Daily Load (TMDL) assessments of stream nutrients such as nitrogen (N) and phosphorus (P). One suggested Best Management Practice (BMP) is the export of phosphorus (P) through turfgrass sod produced with composted dairy manure from an impaired rural watershed to an urban watershed. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The Soil and Water Assessment Tool (SWAT) was used to model a typical suburban watershed that would receive the transplanted sod. The objective of the modeling was to determine the water quality changes due to the import of sod transplanted from turf fields and grown with composted dairy manure. The SWAT model was calibrated to simulate historical flow and sediment and nutrient loading to Mary's Creek. The total P stream loading to Mary's Creek was lower when manure-grown sod was imported instead of commercial sod grown with inorganic fertilizers. Yet, flow, sediment yield, and total N yield increased equally for both cases at the watershed outlet. The SWAT simulations indicate that a turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.
16

An Integrated Modeling Approach for Evaluation of Phosphorus Loading in Rural Nova Scotia Watersheds

Sinclair, Andrew Charles 08 January 2014 (has links)
Residential on-site wastewater systems (OWS) are a potential source of phosphorus (P) which can negatively impact surface water quality in rural watersheds. The magnitude of P loading from OWS is typically not monitored, and is further complicated when agricultural land-uses are intermixed with residential dwellings. Watershed-scale computer simulations are commonly used tools for evaluating the impacts of land-use changes on P loading. Existing models simulate OWS P treatment via vertical flow transport in native soils. However, in Nova Scotia (NS) OWS designs rely pre-dominantly on lateral flow and imported sand filter media. In this thesis, a watershed-scale computer modeling framework for simulating P loads from agriculture and lateral flow OWS designs was developed and tested. The framework consists of the P on-site wastewater simulator (POWSIM), designed specifically for this study, which is used in conjunction with the Soil and Water Assessment Tool (SWAT) model. The POWSIM loading tool has three computational components: (i) OWS disposal field design type selection and treatment media mass calculation; (ii) disposal field P treatment dynamics; and (iii) soil subsurface plume P treatment dynamics. The active P treatment media mass and dynamics equations were developed from numerical modeling (HYDRUS-2D) and lateral flow sand filter (LFSF) OWS disposal field experiments. A 2-part piecewise linear model was found to best represent LFSF P treatment processes. Testing of the modeling framework in the mixed land-use Thomas Brook Watershed (TBW) in NS demonstrated improved simulation of baseflow total P (TP) loads in both a predominantly residential subcatchment and one dominated by agriculture over the SWAT model without POWSIM. Different residential and agricultural development and beneficial management practice (BMP) scenarios were evaluated in the TBW. Agricultural BMPs were most effective at reducing cumulative TP loads while OWS BMPs were best at mitigating in-stream eutrophication impacts. The 50 year simulation period for the various scenarios found peak OWS TP loading occurring between 25 and 50 years, suggesting that modeling for many decades is required for proper evaluation. This study highlights the importance in identifying specific water quality issues that need to be targeted prior to implementing a BMP strategy.
17

Assessment of flood mitigation strategies for reducing peak discharges in the Upper Cedar River watershed

Drake, Chad Walter 01 May 2014 (has links)
This thesis evaluates the effectiveness of several flood mitigation strategies for reducing peak discharges in the Upper Cedar River Watershed located in northeast Iowa. Triggered by record flooding in June 2008, the Iowa Watersheds Project was formed to evaluate and construct projects for flood reduction. The Upper Cedar was selected as a pilot watershed and a hydrologic assessment was performed to better understand its flood hydrology. Evaluation of different flood mitigation strategies was performed with HEC-HMS, a lumped parameter surface water model. The hydrologic model development is described and the model applications are analyzed. The HMS model was used in several ways to better understand the flood hydrology of the Upper Cedar River Watershed. First, the runoff potential of the basin was assessed to identify the primary runoff generation mechanisms. Areas with agricultural land use and moderately to poorly draining soils had the highest runoff potential. Following, the model was used to evaluate the impact of several flood mitigation strategies - increased infiltration through land use changes, increased infiltration through soil improvements, and added storage in the watershed to hold runoff temporarily and reduce downstream flood peaks - for different flood frequency events (the 10-, 25-, 50-, and 100-year, 24-hour design rain storms) and the June 2008 flood. Although each scenario is hypothetical and simplified, they do provide benchmarks for the types of reductions physically possible and the effectiveness of strategies relative to one another. In order to reduce the impacts of flooding in the Upper Cedar, a combination of projects that enhance infiltration and/or store excess runoff will be necessary.
18

Evaluation of conservation practices effect on water quality using the SWAT model

Venishetty, Vivek 12 May 2023 (has links) (PDF)
The deterioration of water quality due to human-driven alternations has an adverse effect on the environment. More than 50% of surveyed surface water bodies in the United States (US) are classified as impaired waters as per the Clean Water Act. The pollutants affecting the water quality in the US are classified as point and non-point sources. Pollutant mitigation strategies such as the selective implementation of best management practices (BMPs) based on the severity of the pollution could improve water quality by reducing the amounts of pollutants. Quantifying the efficiency of a specific management practice can be difficult for large watersheds. Complex hydrologic models are used to assess water quality and quantity at watershed scales. This study used a Soil and Water Assessment Tool (SWAT) that can simulate a longer time series for hydrologic and water quality assessments in the Yazoo River Watershed (YRW). This research aims to estimate streamflow, sediment, and nutrient load reductions by implementing various BMPs in the watershed. BMPs such as vegetative filter strips (VFS), riparian buffers, and cover crops were applied in this study. Results from these scenarios indicated that the combination of VFS and riparian buffers at the watershed scale had the highest reduction in sediment and nutrient loads. Correspondingly, a comparative analysis of BMP implementation at the field and watershed scale showed the variability in the reduction of streamflow, sediment, and nutrient loads. The results indicated that combining VFS and CC at the field scale watershed had a greater nutrient reduction than at the watershed scale. Likewise, this study investigated the soil-specific sediment load assessments for predominant soils in the YRW, which resulted in soil types of Alligator, Sharkey, and Memphis soils being highly erodible from the agricultural-dominant region. This study also included the effect of historical land use and land-cover (LULC) change on water quality. The analysis revealed that there was a significant decrease in pastureland and a simultaneous increase in forest and wetlands, which showed a decreasing trend in hydrologic and water quality outputs. Results from this study could be beneficial in decision-making for prescribing appropriate conservation practices
19

Automated Calibration of the GSSHA Watershed Model: A Look at Accuracy and Viability for Routine Hydrologic Modeling

Shurtz, Kayson M. 23 November 2009 (has links) (PDF)
The goal of hydrologic models is to accurately predict a future event of a given magnitude. Historic data are often used to calibrate models to increase their ability to forecast accurately. The GSSHA model is a distributed model that uses physical parameters and physics based computations to compute water flow from cell to cell based on a 2 dimensional grid. The goal of calibration is to obtain good estimates for the actual parameters of the watershed. These parameters should then transfer to other storm events of different magnitudes more easily than an empirical model. In conducting this research three watersheds were selected in different parts of the United States and the required data were collected to develop and run single event hydrologic models. The WMS software was used to preprocess digital spatial data for model creation before calibrating them with the GSSHA model. A calibrated HEC-HMS model was also developed for each watershed for comparative purposes. Establishing GSSHA's usability in routine hydrologic modeling is the primary objective of this research. This has been accomplished by developing guidelines for GSSHA calibrations, assisted by WMS, testing model accuracy in the calibration and verification phases, and comparing results with HEC-HMS, a model widely accepted for routine hydrologic modeling. As a result of this research, the WMS interface has become well equipped to set up and run GSSHA model calibrations. The focus has been on single event, or routine hydrologic model simulations, but continuous simulation calibrations, an important strength of GSSHA, can also be developed. Each of the model simulations in the study calibrated well in terms of matching peak and volume. However, the verification for two out of the three watersheds used in the study was less than ideal. The results of this research indicate that the physical factors, which GSSHA should represent well, are particularly sensitive for single event storms. The use of calibration of single events is therefore difficult in some cases and may not be recommended. Further research could be done to establish guidelines for situations (e.g. watershed conditions, storm type, etc.) where single event calibration is plausible.
20

Satellite Altimetry and Hydrologic Modeling of Poorly-Gauged Tropical Watershed

Sulistioadi, Yohanes Budi January 2013 (has links)
No description available.

Page generated in 0.0911 seconds