• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of the interfoam VoF code to coastal wave/structure interaction

Morgan, Gerald C. J. January 2013 (has links)
The validation of the “interFoam” CFD model (part of the OpenFOAM) CFD library is described for a number of wave/structure interaction problems. The background to the research is described, including the reasons for the selection of a new, previously unvalidated CFD code for this purpose. The numerical aspects of the code are briefly reviewed as are some of its additional features including the simulation of porous media. The new wave-generating boundary condition, created as part of this project, is described. The model is validated for the propagation of waves, including violent, breaking waves, using the widely-known “Dingemans” test case as well as new data for wave and focussed wave group propagation over a bar. The model is validated for wave interaction with surface-piercing structures by examining a test case for focussed wave-group impact on a surface-piercing cylinder with one near-breaking wave and a second, breaking, wave. The model is shown to perform well in these cases without the need for calibration and can therefore be considered to be a valuable design tool. It is also shown that in these cases the model can run sufficiently fast to be practical and economic for use as a design tool. The model is validated for porous media with a case examining porepressure transmission through a porous breakwater. The model performs poorly without calibration, highlighting the high levels of uncertainty in the Darcy parameter, but once calibrated is found to produce accurate results in very reasonable time. A case study of a porous roundhead defence structure is also presented to further reinforce the practical usefulness of the model in design.
2

On the role of aeration, elasticity and wave-structure interaction on hydrodynamic impact loading

Mai, Trí Cao January 2017 (has links)
Local and global loadings, which may cause the local damage and/or global failure and collapse of offshore structures and ships, are experimentally investigated in this study. The big research question is how the aeration of water and the elasticity of the structural section affect loading during severe environmental conditions. A further question is how the scattered waves from ships and offshore structures, the mooring line force and the structural response, which are known to affect local load and contribute to global load, will be affected by wave-structure interaction of a ship or offshore structure under non-breaking wave conditions. Three different experiments were undertaken in this study to try to answer these questions: (i) slamming impacts of a square flat rigid/elastic plate, which represents a plate section of the bottom or bow of ship structure, onto pure and aerated water surface with zero degree deadrise angle; (ii) wave impacts on a truncated vertical rigid/elastic wall in pure and aerated water, where the wall represents a plate section of a hull; and (iii) wave-structure interactions of different FPSO-shaped models, where the models were fixed or taut moored. The experiments were carried out at Plymouth University’s COAST Laboratory. Spatial impact pressure distributions on the square plate have been characterised under different impact velocities. It was found that the impact pressures and force in pure water were proportional to the square of impact velocity. There was a significant reduction in both the maximum impact pressure and force for slamming in aerated water compared to that in pure water. An exponential relationship of the maximum force and the void fraction is proposed and its coefficients are found from drop test in this study. There was also a significant reduction in the first phase of the pressure and force impulse for slamming into aerated water compared with pure water. On the truncated wall, aeration also significantly reduced peak wave loads (both pressure and force) but impulses were not reduced by very much. For the case considered here, elasticity of the impact plate has a significant effect on the impact loads, though only at high impact velocities; here the impact loads were considerably reduced with increasing elasticity. Wave loading on the truncated wall was found to reduce with increasing elasticity of the wall for all investigated breaking wave types: high aeration, flip-through and slightly breaking wave impacts. In particular, impact pressure decreases with increasing elasticity of the wall under flip-through wave impact. As elasticity increases, the impulse of the first positive phase of pressure and force decreases significantly. This significant effect of hydroelasticity is also found for the total force impulse on the vertical wall under wave impacts. Scattered waves were generated from the interaction of focused wave groups with an FPSO model. The results show that close to the bow of the FPSO model, the highest amplitude scattered waves are observed with the most compact model, and the third- and fourth-harmonics are significantly larger than the incident bound harmonic components. At the locations close to the stern, the linear harmonic was found to increase as the model length was decreased, although the nonlinear harmonics were similar for all three tested lengths, and the second- and third-harmonics were strongest with the medium length model. The nonlinear scattered waves increased with increasing wave steepness and a second pulse was evident in the higher-order scattered wave fields for the fixed and free floating models. In addition, the higher harmonics of the mooring line force, and the heave and pitch motions all increased with increasing wave steepness. Incident wave angles of 0 (head-on), 10 and 20 degrees were experimentally investigated in this study. As the incident wave angle between the waves and the long axis of the vessel was increased from 0 to 20 degrees, the third- and fourth-harmonic scattered waves reduced on the upstream side. These third- and fourth-harmonic diffracted waves are important in assessing wave run-up and loading for offshore structure design and ringing-type structural response in fixed and taut moored structures. The second-, third- and fourth-harmonics of the mooring line force, and the heave and pitch motions decreased as the incident wave angle increased from 0 to 20 degrees.
3

Motion and wave load analyses of large offshore structures and special vessels in waves

Wu, Xiong-Jian January 1990 (has links)
Predictions of the environmental loading and induced motional and structural responses are among the most important aspects in the overall design process of offshore structures and ships. In this thesis, attention is focused on the wave loads and excited bodily motion responses of large offshore structures and special vessels. With the aim of improving the existing theoretical methods to provide techniques of theoretical effectiveness, computational efficiency, and engineering practicality in marine and offshore applications, the thesis concentrates upon describing fundamental and essential aspects in the physical phenomenon associated with wave-structure interactions and deriving new methods and techniques to analyse offshore structures and unconventional ships of practical interest. The total wave force arising from such a wave-structural interaction is assumed to be a simple superposition of the potential and the viscous flow force components. The linear potential forces are solved by the Green function integral equation whilst the viscous forces are estimated based on the Morison's damping formula. Forms of the Green function integral equation and the associated Green function are given systematically for various practical cases. The relevant two-dimensional versions are then derived by a transformation procedure. Techniques are developed to solve the integral equation numerically including the interior integral formulation and, in particular, to tackle the mathematical difficulties at irregular frequencies. In applying the integral equations to solve problems with various offshore structures and special vessels, some modified, improved or simplified methods are proposed. At first, simplified method is derived for predictions of the surge, sway and yaw motions of elongated bodies of full sectional geometry or structures with shallow draft. Then, a new shallow draft theory is described for both three- and two-dimensional cases with inclusion of the finite draft effect. Furthermore, a three-dimensional strip method is formulated where the end effects of the body are fully taken into account. Finally, an approximation to the horizontal mean drift forces of multi-column offshore structures are presented. Some new findings are also discussed including the multiple resonances occurring in the motions of multi-hulled marine structures due to the wave-body interaction, the mutual cancellation effect of the diffraction and the radiation forces arising from a full shaped slender body, and so on. Further to those verification studies for individual methods developed, more comprehensive example investigations are given related to two industrial applications. One is a derrick barge semi-submersible with zero forward speed; and the other, a SWATH ship with considerable speed. By correlation of all the proposed approaches with available analytical, numerical and experimental data, the thesis tries to demonstrate a principle that as long as principal physical aspects in the wave-structure interaction problem are properly treated, an appropriately modified or simplified method works, performs well and, sometimes, even better.
4

Two-phase spectral wave explicit Navier-Stokes equations method for wave-structure interactions / Méthode SWENSE bi-phasique : application à l’étude des interactions houle-structure

Li, Zhaobin 27 November 2018 (has links)
Cette thèse propose un algorithme efficace pour la simulation numérique des interactions houle-structure avec des solveurs CFD bi-phasiques. L'algorithme est basé sur le couplage de la théorie potentielle et des équations bi-phasiques de Navier-Stokes. C'est une extension de la méthode Spectral Wave Explicit Navier-Stokes Equations (SWENSE) pour les solveurs CFD bi-phasiques avec une technique de capture d'interface. Dans cet algorithme, la solution totale est décomposée en une composante incidente et une composante complémentaire. La partie incidente est explicitement obtenue avec des méthodes spectrales basées sur la théorie des écoulements potentiels ; seule la partie complémentaire est résolue avec des solveurs CFD, représentant l'influence de la structure sur les houles incidentes. La décomposition assure la précision de la cinématique des houles incidentes quel que soit le maillage utilisé parles solveurs CFD. Une réduction significative de la taille du maillage est attendue dans les problèmes typiques des interactions houle structure. Les équations sont présentées sous trois formes : la forme conservative, la forme non conservative et la forme Ghost of Fluid Method. Les trois versions d'équations sont implémentées dans OpenFOAM et validées par une série de cas de test. Une technique d'interpolation efficace pour reconstruire la solution des houles irrégulières donnée par la méthode Higher-Order Spectral (HOS) sur le maillage CFD est également proposée. / This thesis proposes an efficient algorithm for simulating wave-structure interaction with two-phase Computational Fluid Dynamics (CFD) solvers. The algorithm is based on the coupling of potential wave theory and two phase Navier-Stokes equations. It is an extension of the Spectral Wave Explicit Navier-Stokes Equations (SWENSE) method for generalized two-phase CFD solvers with interface capturing techniques. In this algorithm, the total solution isdecomposed into an incident and acomplementary component. The incident solution is explicitly obtained with spectral wave models based on potential flow theory; only the complementary solution is solved with CFD solvers, representing the influence of the structure on the incident waves. The decomposition ensures the accuracy of the incident wave’s kinematics regardless of the mesh in CFD solvers. A significant reduction of the mesh size is expected in typical wave structure interaction problems. The governing equations are given in three forms: the conservative form, the non conservative form, and the Ghost of Fluid Method (GFM) form. The three sets of governing equations are implemented in OpenFOAM and validated by a series of wave-structure interaction cases. An efficient interpolation technique to map the irregular wave solution from a Higher-Order Spectral (HOS) Method onto the CFD grid is also proposed.

Page generated in 0.1304 seconds