• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computation of Acoustic Wave Propagation Under Water / Beräkning av akustisk vågutbredning under vatten

Thörn, Frida January 2022 (has links)
In this thesis we look at acoustic wave propagation under water. We look in particular at waves generated by a point source and what happens with the propagation when we model the bottom as flat or as curvilinear. We assume the source to be working at a certain frequency and therefore we model this problem by solving the Helmholtz equation. Since Helmholtz equation has some unwanted numerical properties we are interested in finding new numerical methods that could accelerate the solver. In this thesis we use the Waveholtz iteration, which solves Helmholtz equation by connecting it to the time-dependent wave equation. We use finite differences and the SBP-SAT method to approximate the spatial problem numerically and for modelling the sea bottom we use curvilinear coordinates.  To compare the Waveholtz iteration we also solve Helmholtz equation with a naive solver. The naive solver consists of approximating the equation with finite differences and then solving the linear system of equation by some iterative solver, which for our tests will be GMRES. The results show that the Waveholtz iteration converges in less iterations than our naive solver. It also shows that the number of iterations stays unchanged when changing our discretization, which otherwise is a big problem for our naive solver. This allows us to increase the accuracy of our numerical solution without changing the computation time too much.  We show that the number of iterations increases according to theory for an increasing frequency, and that for open problems we even see a smaller increase. For certain resonant frequencies in Helmholtz equation we do not expect the Waveholtz iteration to converge. In the neighbourhood of these frequencies the convergence becomes slow and we need many iterations for a solution of a certain accuracy. By reformulating the Waveholtz iteration as a Krylov solution we can see that resonances in Helmholtz equation have a smaller impact of the convergence. / I detta examensarbete undersöker vi akustisk vågutbredning i vatten. Vi kollar specifikt på vågor som genereras av en punktkälla och vad som sker när vi modellerar botten som plan eller som kurvlinjär. Då vi antar att punktkällan arbetar vid en bestämd frekvens, kommer vi modellera det fysikaliska problemet genom att lösa Helmholtz ekvation. Helmholtz ekvation har dock några numeriska egenskaper som är oönskade, och därför finns ett intresse av att hitta nya numeriska metoder som löser ekvationen. I detta examensarbete undersöker vi Waveholtz iteration, som löser Helmholtz ekvation genom att koppla den till den tidsberoende vågekvationen. Vi använder finita differenser och SBP-SAT metoden för att approximera det rumsliga problemet numeriskt. För att ge en detaljerad beskrivning av botten använder vi kurvlinjära koordinater. För att jämföra Waveholtz iterationen med något löser vi även Helmholtz med hjälp av en naiv lösare. Den naiva lösaren består av att approximera problemet med finita differenser och sedan lösa det linjära systemet rakt av med en iterativ lösare (vilket för våra fall kommer vara GMRES). Resultatet visar att Waveholtz iteration konvergerar på ett lägre antal iterationer än vår naiva lösare. Det visar även att antalet iterationer inte förändras när vi ändrar diskretisering, vilket annars är ett problem för vår naiva lösare. Detta innebär att vi kan få en högre noggrannhet utan att förlänga beräkningstiden alltför mycket.  Vi visar även att antalet iterationer ökar som förväntat med en ökad frekvens, samt att för öppna problem så ökar antalet iteration mindre än enligt teorin. Vid vissa resonanta frekvenser i Helmholtz ekvation förväntar vi oss att Waveholtz iteration inte kommer konvergerar. I närheten av dessa frekvenser blir konvergensen långsam och vi behöver många iterationer för att lösa problemet. Genom att formulera Waveholtz iteration som en Krylov lösning kommer resonanser i Helmholtz ekvation ge en mindre negativ effekt på konvergensen än om den är formulerad som en fixpunkts iteration.
2

Computation of Underwater Acoustic Wave Propagation Using the WaveHoltz Iteration Method / Beräkning av propagerande ljudvågor i grund och kuperad undervattensmiljö

Wall, Paul January 2022 (has links)
In this thesis, we explore a novel approach to solving the Helmholtz equation,the WaveHolz iteration method. This method aims to overcome some ofthe difficulties with solving the Helmholtz equation by providing a highlyparallelizable iterative method based on solving the time-dependent Waveequation. If this method proves reliable and computationally feasible it wouldhave great value for future application. Therefore, it is of interest to evaluatethe performance and properties of this method. To fully evaluate this method,the method was implemented and conclusions were based on results fromsimulations of the method. The method was able to solve problems in threedimensions and it seems that the method is very well suited for parallelized computations. To replicate real-world scenarios simulations of problems ininfinite and curvilinear domains were conducted. Based on the result presentedhere it is possible to further refine the method, especially regarding the setupof the domain and the implementation of boundary conditions for infinitedomains. / I detta examensarbete presenteras en ny metod för att lösa Helmholtz ekvation, WaveHoltz iterativa metod. Målet med denna metod är att undkomma vissa problem som uppstår med andra metoder för att lösa Helmholtz ekvation genom att tillhandahålla iterativ metod som baseras på lösningar av den tidsberoende vågekvationen samt kan parallelliseras effektivt. Om denna metod visar sig vara stabil och effektiv beräkningsmässigt skulle detta medföra stor potential för framtida tillämpningar. Av denna anledning undersöks metoden och dess egenskaper. För att fullt ut kunna evaluera denna method implementerades den vartefter simuleringar genomfördes och slutsatser drogs. Med metoden var att det var möjligt att lösa problem i tre dimensioner och metoden visade sig vara lämplig för parallella beräkningar. För att återskapa verklighetstrogna scenarion beräknades problem i oändliga och kroklinjiga domäner. Baserat på resultaten som presenteras i denna rapport är det möjligt att förfina metoden, speciellt vid konstruktionen av komplicerade beräkningsnät och randvillkoren för de oändliga problemen.

Page generated in 0.109 seconds