Spelling suggestions: "subject:"wavelet. eng"" "subject:"avelet. eng""
1 |
Redes neurais : aplicação no monitoramento da vida de ferramentas de corte /Alexandre, Rogério Pinto. January 2005 (has links)
Resumo: Este trabalho discute a utilização de Redes Neurais Artificiais na avaliação da evolução do desgaste da ferramenta de corte no processo de torneamento a partir dos níveis de vibração do sistema porta-ferramenta - ferramenta - peça. Os níveis de desgaste foram definidos em termos da rugosidade superficial da peça e desgaste de flanco da ferramenta e posteriormente, os valores de vibração medidos no porta ferramenta, foram correlacionados com esses níveis de desgaste. Foram realizados diversos ensaios utilizando o aço ABNT 1045, com ferramentas de metal duro sem cobertura e com cobertura de nitreto de titânio. Os testes foram efetuados utilizando as rotações 630, 800, 1000 e 1250 rpm, variando-se a velocidade de corte entre 100 e 200 m/min. Os sinais de vibração foram processados e analisados utilizando valores RMS (Root Mean Square) e a Transformada Wavelet, sendo que neste caso, foram extraídos os valores RMS dos coeficientes wavelet. Os dados obtidos foram utilizados nas fases de treinamento e validação das redes neurais empregadas, utilizando o algoritmo Backpropagation. Os dados foram agrupados em quatro estágios que classificam o nível de desgaste da ferramenta em estágio inicial, estágio intermediário, estágio avançado e estágio crítico de desgaste. Os testes mostraram que a utilização dos valores RMS do sinal de vibração pode levar a resultados satisfatórios, entretanto, houve algumas situações de insucesso. Alternativamente, a rede neural quando treinada com os valores RMS dos coeficientes wavelet apresentou uma melhor capacidade de identificação, com um percentual de acerto maior do que quando treinada apenas com os valores RMS dos sinais de vibração. Os resultados mostram que o monitoramento da vibração da ferramenta e a utilização de redes neurais artificiais para identificação dos diferentes... (Resumo completo, clicar acesso eletrônico abaixo). / Abstract: This work discusses the use of Artificial Neural Networks (ANN) for the evaluation of tool wear in turning operations by using the vibration of the tool holder - tool - workpiece system. The wear levels were defined in terms of the surface roughness and flank wear of the cutting tool and later on, the vibration measured in the tool holder were correlated with those wear levels. Several experiments were carried out at different cutting conditions using ABNT 1045 steel as the workpiece material, the surface roughness were measured for carbide cutting tools without coating and with coating of titanium nitride. The tests were made using the rotations 630, 800, 1000 and 1250 rpm, being varied the cutting speed between 100 and 200 m/min. The vibration signals were processed and analyzed using RMS (Root Mean Square) values and the Wavelet Transform, in the later case; the RMS values were extracted from the wavelet coefficients. The obtained data were used in the training phases and validation of the neural network, using the Backpropagation algorithm. The data were settled in four groups that classify the level of the tool wear, initial, intermediary, advanced and critical. The experiments showed that the use of RMS values of the vibration signals can bring to satisfactory results, however, the neural network trained with the RMS values from the wavelet coefficients presented a better identification capacity, with a larger percentile of success, than that when just RMS values of the vibration signals were taken. The results show that the monitoring of the vibration of the tool holder-tool-workpiece system and the use of artificial neural network for identification of the different state of the tool, they can be used to settle the end of the tool life in the turning process. It was also evidenced the potentiality of Transformed Wavelet to be used... (Complete abstract click electronic address below). / Orientador: João Antonio Pereira / Coorientador: Hidekasu Matsumoto / Banca: Amauri Hassui / Banca: Gilberto Pechoto de Melo / Mestre
|
2 |
Rede Neuro-Fuzzy-Wavelet para detecção e classificação de anomalias de tensão em sistemas elétricos de potência /Malange, Fernando Cezar Vieira. January 2010 (has links)
Orientador: Carlos Roberto Minussi / Banca: Anna Diva Plasencia Lotufo / Banca: Mara Lúcia Martins Lopes / Banca: Arlan Luiz Bettiol / Banca: Edmárcio Antonio Belati / Resumo: Muitos esforços têm sido despendidos para tentar sanar problemas relacionados com Qualidade da Energia Elétrica (QEE), principalmente na automação de processos e desenvolvimento de equipamentos de monitorização que possibilitem maior desempenho e confiabilidade a todo o Sistema Elétrico. Esta pesquisa apresenta um sistema eficiente de identificador/classificador automático de distúrbios chamado de Rede Neuro-Fuzzy-Wavelet. A estrutura básica dessa rede é composta por três módulos: o módulo de detecção de anomalias onde os sinais com distúrbios são identificados, o módulo de extração de características onde as formas de onda com distúrbio são analisadas, e o módulo de classificação que conta com uma rede neural ARTMAP Fuzzy, a qual indica qual o tipo de distúrbio sofrido pelo sinal. Os tipos de distúrbios incluem os isolados de curto prazo, tais como: afundamento de tensão (sag), elevação de tensão (swell), os distúrbios de longo prazo como distorção harmônica, bem como distúrbios múltiplos simultâneos como afundamento de tensão com distorção harmônica e elevação de tensão com distorção harmônica. A concepção do sistema de inferência (neural wavelet ARTMAP fuzzy) permite realizar a classificação dos referidos distúrbios de forma robusta e com grande rapidez na obtenção das soluções. Testes apontam para o alto desempenho dessa rede na detecção e classificação correta dos tipos de distúrbios de tensão analisados, 100% de acerto. A forma robusta e grande rapidez na obtenção dos resultados, possibilita sua aplicação em tempo real, visto que o esforço computacional, muito pequeno, é alocado, basicamente, na fase de treinamento. Somente uma pequena parcela de tempo computacional é necessária para a efetivação das análises. Além do mais, a metodologia proposta pode ser estendida para a realização de tarefas mais complexas... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Many efforts have been spent to solve problems related to Power Quality (PQ), principally in process automation and developing monitoring equipments that can provide more reliability and behavior for the electrical system. This research presents an efficient automatic system to identify/classify disturbs by Fuzzy Wavelet Neural Network. The basic structure of this neural network is composed of three modules such as: module for detecting anomalies where the signals with disturbs are identified, module for extracting the characteristics where the wave forms with disturbs are analyzed, and the module of classification that contains a fuzzy ARTMAP neural network that shows the type of disturbs existing in the signal. The types of disturbs include the short term isolated ones which are: voltage dip (sag), voltage increasing (swell); the long term disturbs such as harmonic distortion as well as the multiple simultaneous ones like the voltage dip with harmonic distortion and voltage increasing with harmonic distortion. The inference system (neural wavelet ARTMAP fuzzy) allows executing the classification of the cited disturbs very fast and obtaining reliable results. This neural network provides high performance when classifying and detecting the voltage disturbs very fast with about 100% of accuracy. The speed in obtaining the results allows an application in real time due to a low computational effort, which is basically in the training phase of the neural network. A little time of the computational effort is spent for the analysis. Moreover the proposed methodology can be used for realizing more complex tasks, as for example the localization of the power sources of the voltage disturbs. It is a very important contribution in the power quality, mainly to be a needy activity for solutions on the specialized literature / Doutor
|
Page generated in 0.037 seconds